
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Dependent Type Systems as Macros

STEPHEN CHANG, Northeastern University, USA
MICHAEL BALLANTYNE, Northeastern University, USA
MARCELA POFFALD, Unaffiliated, USA
WILLIAM J. BOWMAN, Northeastern University, USA

Increasingly, programmers want the power of dependent types, yet significant expertise is still required to
write realistic dependently-typed programs. In response, domain-specific languages (DSLs) attempting to tame
dependent types have proliferated, adding notation and tools tailored to a problem domain. This only shifts
the problem, however, since implementing such languages requires at least as much expertise as using them.

We show how to lower the burden for implementing dependently-typed languages and DSLs, using a classic
approach to DSL implementation not typically associated with typed languages: macros. By leveraging a
macro system, programmers may reuse all of a host language’s infrastructure when implementing a new,
dependently-typed language or DSL, reducing the overall effort. We also extend the Turnstile language, a
meta-DSL for implementing typed DSLs using syntax resembling “pen and paper” models, with support for
dependent types. Using macros simplifies not only the initial language implementation, but also the addition
of extensions like notation or tactic languages—all but required features for dependently-typed languages.

We evaluate our approach by building three languages in different parts of the design space: first, we present
a video-editing DSL with a Dependent ML-like type system, demonstrating that our approach accommodates
“lightweight” dependent types; second, we gradually extend MLTT to the Calculus of Inductive Constructions,
demonstrating that our approach is modular, and scales to “heavyweight” dependent type systems; finally, we
describe Cur, a prototype proof assistant with a design similar to Coq, which supports new notation and an
extensible tactic language, demonstrating that our approach scales to realistic dependently-typed languages.

1 INTRODUCTION
Programmers are increasingly wanting and using dependent types. For example, Haskell has
embraced type-level computation [Weirich et al. 2017], Rust is considering adding Π types [rus
2017], and new dependently typed languages such as F* have leveraged domain-specific languages
(DSLs) to verify software such as Firefox’s TLS [Beurdouche et al. 2017; Zinzindohoué et al. 2017].

Despite this progress, implementing and using dependent types remains complicated, and thus
not all programmers are ready for them. At one end of the spectrum, language designers debate
about the “right” amount of dependent types. For example, determining the ideal “power-to-weight”
ratio has slowed adoption in Haskell [Yorgey et al. 2012] and has led to repeated rewrites of Rust’s
dependent type RFCs [rus 2016]. At the other end, proof assistants that ignore “weight” in favor
of “power” must layer on companion DSLs (e.g., a tactic language) to help programmers use the
language [Brady and Hammond 2006; Christiansen 2014; Devriese and Piessens 2013; Ebner et al.
2017; Gonthier and Mahboubi 2010; Gonthier et al. 2011; Krebbers et al. 2017; Malecha and Bengtson
2016; Pientka 2008; Stampoulis and Shao 2010; Ziliani et al. 2013].
Ideally, language designers or even users would simply construct a new DSL for each problem

domain, choosing how much “power” to wield on a case-by-case basis. Indeed, DSLs have been
used effectively to tame dependent types [Barthe et al. 2009; Chlipala 2011; Chlipala et al. 2017;
Zinzindohoué et al. 2017], but so far, they have not been simple to build.

Authors’ addresses: Stephen Chang, Northeastern University, USA, stchang@ccs.neu.edu; Michael Ballantyne, Northeastern
University, USA, mballantyne@ccs.neu.edu; Marcela Poffald, Unaffiliated, USA, mpoffald@gmail.com; William J. Bowman,
Northeastern University, USA, wjb@williamjbowman.com.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

We aim to change that, by showing how to use macros to create dependently-typed DSLs.
Procedural macros, in the style of LISP and its descendants, simplify the construction of DSLs [Fowler
and Parsons 2010] by reusing much of the host language infrastructure such as parsing, elaboration,
namespace management, and compilation. We show how this approach reduces the complexity of
dependent types for both language implementors—because the DSL may reuse the infrastructure of
the host language—and users—because the complexity of the type system may be exactly tailored
to a specific problem domain. Better yet, any languages created with this approach may leverage
the macro system to implement extensions to the core language such as new notation and tools for
automatically constructing proofs and programs.
The macro-based approach to building DSLs has not historically included typed languages,

but recently Chang et al. [2017] introduced the technique of “type systems as macros”, showing
how programmers may use macros to create typed DSLs as well. Specifically, they show that
with a contemporary macro system as found in Racket [Flatt and PLT 2010]—a LISP and Scheme
descendant—programmers may create typed DSLs simply by embedding type rule logic directly into
the macro definitions. This macro-based approach improves on the traditional approach of creating
typed DSLs—where domain-specific types are encoded into an existing host type system—because
it does not constrain DSL creators to the limitations of any particular type system. Instead, DSL
implementers have the flexibility to create the right type system for their domain. Finally, macros
are naturally expressed as local, modular transformations, and implementing type rules with macros
results in a type checker that naturally matches the modularity of its mathematical specification.
This is demonstrated in Chang et al. [2017]’s Turnstile, a meta-DSL that allows implementing
typed DSLs using a judgement-like syntax resembling what programmers would find in a textbook.
We extend the “type systems as macros” approach—and the Turnstile language—to support

creating dependently-typed languages. This is a major technical challenge, as dependent types
break many of the assumptions implicit in macro systems, and in the previous design of Turnstile.
For example, run-time and expansion time are distinct phases for a macro system, but there can be
no such distinction for a dependently-typed language, which may evaluate expressions while type
checking. There are new design challenges as well, e.g., a framework for building dependently-
typed languages should support common type notation such as telescopes, i.e., nested binding
environments [de Bruijn 1991; McBride 2000]. Specifically, we make the following contributions.

• We extend Turnstile with a new API for defining types that is syntactically concise, yet
robust enough to implement a range of constructs from base types, to binding forms like Π
types, to indexed inductive type families.

• We show how to leverage macros and macro expansion to perform the work of type-level re-
duction in an extensible manner, and also add Turnstile constructs that allow implementing
these reduction rules with familiar on-paper syntax.

• A key source of complexity in implementing dependent types is handling dependent binding
structure, e.g., manipulating telescopes. For example, checking such binding types requires
interleaving checkingwith adding new environment bindings, and instantiating them requires
a folding substitution operation. We extend Turnstile’s pattern language to support these
operations, allowing us to express features with complex binding structure (such as indexed
inductive type families) using a concise, intuitive notation.

• We evaluate our approach by constructing three example languages.
(1) We present a video-editing DSL with a Dependent ML-like type system that statically

enforces guarantees about the lengths of videos, tracks, and playlists, demonstrating that
our approach allows tailoring dependent types into a more “lightweight” flavor.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Dependent Type Systems as Macros 1:3

(2) We gradually build up a core calculus, culminating in the Calculus of Inductive Construc-
tions (CIC) [Pfenning and Paulin-Mohring 1989], demonstrating that our macros-based
approach is modular, extensible, and supports “heavyweight” dependent type systems.

(3) To demonstrate that our approach supports creating realistic languages, we present Cur,
a prototype proof assistant whose core—the impredicative CIC—resembles that of Coq,
but requires only a few dozen lines of code in our extended Turnstile. With macros, we
easily extend core Cur with features such as syntactic sugar and a tactic language. Using
the latter, we worked through several chapters of “Logical Foundations” [Pierce et al. 2018],
demonstrating that the tactic system is sophisticated enough to support Coq-style proofs.

2 CREATING MACRO-BASED DSLS WITH RACKET: PRIMER
This section introduces building languages—typed and untyped—with Racket’s macro system.1

#lang racket bool-lang

(provide true false and or not #%app ⊃ (rename truth-table λ))

(define-m (truth-table (xid . . .) [argbool . . . === resbool] . . .)
#:with (dnf-clause-fn ...) (λ (x . . .) (and res ((bool->lit arg) x) . . .))
(λ (x . . .) (or (dnf-clause-fn x ...) ...)))

(define ⊃ (truth-table (x y) [false false = true]
[true false = false]
[false true = true]
[true true = true]))

(define-m bool->lit [(_ truetruetrue) (λ (x) x)] [(_ falsefalsefalse) not])

Fig. 1. A basic (untyped) Boolean-logic DSL created with Racket.

2.1 An Untyped DSL
A Racket language is defined by the exports of a module. Figure 1 presents the bool-lang module,
an example language of Boolean logic, which we use to introduce notation used in the paper,2 and
DSL creation with macros. Key to defining languages as macros are the abilities to:
(1) reuse host language (Racket) features for their own language; e.g., bool-lang reuses true,

false, and, or, not, as well as the function application form #%app;
(2) add functions and forms; e.g., bool-lang defines and exports the implication function ⊃;
(3) interpose on primitive forms, such as functions and application, using syntactic hooks such

as #%app and λ, e.g., bool-lang redefines λ by the truth-table macro;
(4) exclude features from the host language; e.g., bool-lang does not include first-class functions,

numbers, or lists, but only the explicitly exported features.
To program with bool-lang, programmers use the #lang directive:

1Appendix B lists the macro system features we use in more detail, and discusses other languages with the same features.
2To more clearly communicate concepts, we sacrifice code precision by stylizing code with abbreviations or non-syntactic
elements like color and subscripts. For example, define-m is shorthand for a Racket macro defined via define-syntax and
the syntax-parse pattern matching construct [Culpepper and Felleisen 2010]. Examples may not run as presented, but full
implementations of all examples are available at https://www.github.com/stchang/macrotypes, https://www.github.com/
wilbowma/cur. We summarize our style conventions in Appendix A.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://www.github.com/stchang/macrotypes
https://www.github.com/wilbowma/cur
https://www.github.com/wilbowma/cur

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

#lang bool-lang bool-prog

(⊃ true false) ; result: false
((λ (x) [true = false] [false = true]) (⊃ false true)) ; result: false
(+ 1 2) ;ERR: unsupported

In bool-lang’s implementation, truth-table is a macro, i.e., it is defined3 with define-m, that
converts a table of boolean values into a function implementing an equivalent formula in disjunctive
normal form (DNF). Macros consume and produce a syntax object, an AST data structure that
combines a tree of symbols with context information like source location and binding structure. A
macro typically pattern-matches on its input, using a syntax pattern (green in this paper) whose
shape dictates how the macro is invoked. (Note that the name of the macro being invoked is included
as part of the input for the macro, so all initial syntax patterns begin with a pattern representing
the macro’s own name. For example, truth-table is part of the syntax pattern in the definition
of truth-table.) Most identifiers in a syntax pattern are bound as pattern variables, which are
associated with corresponding pieces of syntax supplied by the programmer when they invoke the
macro. The ellipses pattern . . . means “zero of more of the preceding pattern”.

bool-lang invokes truth-table to define ⊃, where the pattern (x ...) in truth-table’s input
patternmatches syntax object (x y), representing the arguments expected by ⊃. A superscript syntax
class may adorn a pattern variable, which refines what syntax matches that pattern variable. For
example truth-table’s input parameters are tagged with id, so they only match identifiers. Further,
its body consists of rows of literal boolean values representing the inputs and output, separated
by === (a bolded pattern symbol, e.g., ===, denotes an exact value that must be matched). A #:with

keyword introduces additional pattern variables by matching on the syntax object computed by the
second position after the keyword. For example, truth-table uses #:with to define dnf-clause-fn

pattern variables, representing the “and” clauses in its “or of ands” DNF output.
Pattern variables are used in syntax templates (blue in the this paper). A template replaces

references to pattern variables with their corresponding syntax object values. Ellipses that followed
a variable in a syntax pattern must also accompany references to that variable in the syntax template.
Macros frequently use syntax templates to construct their outputs, e.g., truth-table’s output is a
template that references the dnf-clause-fn pattern variables.
Finally, the meaning of any non-pattern-variable identifiers in a syntax template is taken from

the context of the macro definition. For example, the syntax template constructing dnf-clause-fn

references Racket’s λ and and, as well as a local macro bool->lit, which converts a boolean value
into DNF formula literal. The bool->lit macro uses an alternate macro definition syntax with
multiple clauses, whose patterns are tried in order. Observe that each pattern still includes the
name of the macro in its first position, but our example ignores it using the _ pattern.

2.2 A Typed DSL
Figure 2 (left) presents typed-lang, which adds arithmetic to bool-lang, and a type system to
ensure that operations receive the right values. It is created with the “type systems as macros”
technique [Chang et al. 2017] and uses the same four “DSL tools” from Section 2.1. Specifically,
typed-lang interposes on λ and #%app with two new macros, typed-λ and typed-app, respectively,
replacing the #%app and (truth table) λ from bool-lang. These macros use the computation and
pattern matching performed by #:with to implement basic type checking. Since macros embody
local transformations, however, successfully checking types in this manner requires additional
coordination between macros, to communicate type information. Solving this coordination problem

3We underline names being defined.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Dependent Type Systems as Macros 1:5

#lang racket typed-lang

(provide [typed-λ λ] [typed-app #%app]
[typed+ +] [typed-and and])

(define-m (typed-app f e)

#:with [f (→ τin τout)] (synth f)
#:with e (check e τin)
(assign (#%app f e) τout))

(define-m (typed-λ [xid ::: τin] e)

#:with [x e τout] (synth e #:ctx [x : τin])
(assign (λ x e) (→ τin τout)))

(define-m (typed-and e1 e2)

#:with e1 (check e1 Bool)
#:with e2 (check e2 Bool)
(assign (and e1 e2) Bool))

(define-m typed+ (assign + (→ Int Int Int)))

#lang turnstile typed-lang

(provide [typed-λ λ] [typed-app #%app]
[typed+ +] [typed-and and])

(define-tyrule (typed-app f e) ≫

[⊢ f ≫ f ⇒ (→ τin τout)]
[⊢ e ≫ e ⇐ τin]

[⊢ (#%app f e) ⇒ τout])

(define-tyrule (typed-λ [xid : τin] e) ≫

[[x ≫ x : τin] ⊢ e ≫ e ⇒ τout]

[⊢ (λ x e) ⇒ (→ τin τout)])

(define-tyrule (typed-and e1 e2) ≫

[⊢ e1 ≫ e1 ⇐ Bool]
[⊢ e2 ≫ e2 ⇐ Bool]

[⊢ (and e1 e2) ⇒ Bool])

(define-primop typed+ + : (→ Int Int Int))

Fig. 2. (Part of) a typed extension of bool-lang, (left) using Racket, and (right) using Turnstile.

is the essence of “type systems as macros”. Specifically, the synth, check, and assign metafunctions
(Figure 3) implement such a communication protocol between type-checking macros.

The typed-app macro first uses synth to compute the type of function term f, which must match
the pattern (→ τin τout). The synth function produces a second result f representing an elaborated
version of f. Because our type checker is embedded inmacro definitions, type checking is interleaved
with macro expansion, and synth necessarily expands f. To avoid redundant expansions, synth
returns the elaborated f so that typed-app may produce an elaborated term that includes f.4 This
turns out to be an effective and concise way to implement type checkers, since type systems often
require an elaboration pass anyway, e.g., for type erasure.

The typed-appmacro’s second premise uses check to ensure that argument e has type τin. Similar
to synth, check expands its argument and returns the elaborated e. Finally, typed-app constructs
output term (#%app f e), which uses the (untyped) host language #%app, and “assigns” it type τout.
This call to assign is the crucial step that communicates type information between macros, by
attaching type information to the syntax objects, which other type checking macros understand.
In typed-λ, synth computes the type of body e in a context where x has type τin. (The function

is passed the type environment via a named keyword argument #:ctx.) Here synth returns the
elaborated e, as well as the binder x for references in e. The latter is required to construct the output
term in a hygienic macro system, i.e., one that tracks and enforces proper binding structure in all
syntax objects. In other words, programmers may not create binding terms using any arbitrary
identifier with the same name; instead a proper binder must carry the correct program context
information, added via expansion (see Flatt [2016] for more details). Thus only x may close over
e because they were expanded with the same context. It turns out that this knowledge of the
program’s binding structure is extremely useful for implementing type systems and many type

4We use overlines to denote pattern variables bound to fully elaborated syntax

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

operations such as substitution and alpha equivalence. Finally, typed-λ uses assign to associate the
elaborated syntax (λ x e) with its type (→ τin τout).

Figure 2 (left) includes a few other “type rules”: typed-and checks that its arguments are Bool, and
typed+ is a function with type (→ Int Int Int). In the latter case, typed+ is an identifier macro that
does not require any arguments to invoke it. Thus, typed-app handles type checking application of
typed+. For now, we assume that types are literal pieces of syntax as in Figure 2 (left), e.g., Bool and
Int. Section 3.1 presents a more thorough treatment of defining types.

(define (assign e τ) (attach e ’type τ))
(define (synth e #:ctx [ctx ()])

#:with [xs e] (local-expand (letstx ctx e))
(xs e (detach e ’type)))

(define (check e τ #:ctx [ctx ()])
#:with [xs e τe] (synth e τ #:ctx ctx)
(if (τ= τe τ) (xs e)

(err "type mismatch")))

Fig. 3. “Type systems as macros” core API.

Figure 3 shows the implementations of synth, check, and assign. They require only a few lower-
level operations on syntax, demonstrating that the entire type checker is implemented “as macros”.
Specifically, the functions rely on two features: (1) a local-expand function that initiates macro
expansion on a syntax object, which allows invoking “type checking” macros on a subterm; and (2)
a way of associating additional information (types) with syntax objects; we use syntax properties
which, via attach and detach, to associate key-value pairs to syntax objects.

Individually, assign attaches a type to a term, at key ’type. The synth function consumes an
expression e and an optional environment ctx—which has shape ([x : τ] . . .)—and invokes the
macro expander via local-expand to type check e. To implement the type environment, it wraps e
with letstx, which allows defining local macros. In other words, letstx defines new typed macros
such that untyped variable references in e are themselves macro invocations that return the desired
type information, effectively using the macro environment to implement the type environment.
Finally, synth returns a triple consisting of the expanded context variables, the expanded term e,
and its type. The coloring of synth’s output denotes a quasiquoted syntax template, i.e., the syntax
object is constructed with references to pattern variables xs and e, and a call to the (meta)function
detach. The check function first invokes synth on term e, checks that the actual and expected type
match using type-equality function τ=, and returns the expanded e if successful. For this paper,
we assume τ= (not shown) is syntactic equality up to alpha-equivalence; it is straightforward to
implement since syntax objects are aware of the program’s binding structure.

2.3 A DSL for Typed DSLs
Chang et al. [2017] observed that Figure 2 (left)’s macros closely correspond to algorithmic specifi-
cations. Thus, they created Turnstile, a meta-DSL that allows writing type-checking macros using
a type judgement-like syntax, as seen in Figure 2 (right). Specifically, Turnstile uses two relations
which correspond to “synth” and “check” bidirectional type checking judgments [Pierce and Turner
1998], interleaved with elaboration. They are implemented with synth and check from Figure 3,
respectively. The judgement [ctx ⊢ e ≫ e ⇒ τ] says that, in environment ctx, e elaborates (≫)
to e and synthesizes (⇒) type τ—i.e., τ is an output. Observe how the syntax pattern and syntax tem-
plates on the left and right of Figure 2 remain the same. The check judgment [ctx ⊢ e ≫ e ⇐ τ]

specifies that, in environment ctx, e elaborates to e and checks against (⇐) type τ—i.e., τ is an
input. Bindings are added to the type environment by writing them to the left of ⊢, as in typed-λ,
but only new variables must be written. Since Turnstile reuses the macro environment as the
type environment, existing bindings are automatically propagated by lexical scope. Figure 2 (right)
uses define-tyrule, which has a few usage variations, “synth” (L) and “check” (R):

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Dependent Type Systems as Macros 1:7

(define-tyrule input-pattern ≫

premises ...

[⊢ output-template ⇒ type])

(define-tyrule input-pattern ⇐ input-type ≫

premises ...

[⊢ output-template])

Figure 2 (right) implements “synth” rules, which fire when a term matches input-pattern. If the
premises—a series of synth and check judgements—holds, the macro produces the output specified
by output-template, with type attached. Observe that a textbook would typically write these rules
with the entire conclusion [⊢ input-pattern ≫ output-template ⇒ type] at the bottom, but
Turnstile shifts the conclusion’s input (pattern) to the top, as in a typical macro definition. With a
“check” rule, input-type is also an input and is written next to input-pattern, above the premises.
Thus, a “check” type rule fires when: a term matches input-pattern, the term’s type may be inferred
from its context, and that type matches pattern input-type. Turnstile automatically switches
from “check” to “synth” rules when no corresponding “check” rules exists.

3 LIGHTWEIGHT DEPENDENT TYPES, FOR VIDEO
While Chang et al. [2017] implement a variety of languages with Turnstile, they can not handle
dependent types since they assume an explicit phase distinction, i.e., that terms and types are distinct.
We show that maintaining this distinction is no longer possible when implementing dependent
types, and how to improve Turnstile to cover this deficit. We do this in the context of an example,
Typed Video, a DSL with indexed types—“lightweight” dependent types in the style of Dependent
ML [Xi 2007]—implemented “as macros”. With indexed types, we can lift some terms (the index
language) to the type level to express simple predicates about those terms. While Andersen et al.
[2017] do briefly describe a few type rules, our work is the first to explain the underlying details
required to implement indexed types as macros, such as the implementation of types and type-level
computation. We focus on the new techniques required to express indexed types as macros, using
Typed Video as an example, not on the use or implementation of Typed Video itself.

Typed Video is a typed version of Andersen et al. [2017]’s video language, a DSL for editing
movies that has been used to create the video proceedings of several workshops, e.g., OPLSS.5
Typed Video uses indexed types in order to statically rule out errors that arise when creating
and combining video streams. A Video program manipulates producers—streams of data such as
audio, video, or some combination thereof—cutting, splicing, and mixing them together into a
final product. Since producers ultimately represent physical data on disk, it’s possible to crash
a program (usually during rendering) by accidentally using more data than exists. To prevent
this, Typed Video assigns producer values a Producer type, indexed by its length. This is an ideal
type system for Video since programmers are already required to provide the length of many
expressions.

Below is a function that combines audio, video, and slides to create a conference talk video.
#lang typed/video video-prog

(define (mk-conf-talk [n : Int] [aud : (Producer n)] [vid : (Producer n)]
[slid : (Producer n)]) #:when (> n 3) -> (Producer (+ n 9))

(playlist (img "conf-logo.png" #:len 9)
(fade #:len 3)
(overlay aud vid sli)))

The mk-conf-talk function consumes an integer length n and audio, video, and slides producers
with types (Producer n), meaning they must be at least n frames long. The function combines its
inputs with overlay, and further adds a logo that fades into the main content. The function specifies

5https://lang.video/community.html

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://lang.video/community.html

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

an additional constraint (> n 3), to ensure that the inputs contain enough data to perform the fade
transition. Finally, the output type specifies that the input is extended by 9 frames, to account for
the added logo. The function is assigned the type:

(→vid [n : Int] [aud : (Producer n)] [vid : (Producer n)] [sli : (Producer n)]
(Prod (+ n 9)) #:when (> n 3))

In this binding variant of a function type, each argument is named and the type of each argument
may reference the names preceding it. We demonstrate how to scale the “type systems as macros”
approach to support this binding structure, and extend the Turnstile implementation with the
telescope notation used on-paper to manipulate types like this [de Bruijn 1991; McBride 2000].

3.1 Defining Types
The first challenge is how one can define a typing rule for the function type just presented. This
subsection describes how to extend the key typing judgments when encoded in macros (introduced
in Section 2), and demonstrates our implementation of this approach via a new Turnstile API for
defining types, including dependent types.

To type check types themselves, the obvious approach is to define types as macros, not just terms.
We can then specify the semantics for type construction in the same judgments we used in Section 2.
Figure 4 shows type rules for (single-arity) function types → and→vid.

(struct → (in out))
(define-tyrule (→ τin τout) ≫

[⊢ τin ≫ τin ⇐ Type]
[⊢ τout ≫ τout ⇐ Type]

[⊢ (#%app → τin τout) ⇒ Type])

(struct →vid (in out))
(define-tyrule (→vid [x : τin] τout) ≫

[⊢ τin ≫ τ in ⇐ Type]
[[x ≫ x : τ in] ⊢ τout ≫ τ out ⇐ Type]

[⊢ (#%app →vid τ in (λ (x) τ out)) ⇒ Type])

Fig. 4. Some type rules (macro definitions) for single-arity function types, (left)→, (right)→vid

In Figure 4 (left), the rule for a standard function type → checks that its input and output have
type Type, a type of types.6 But what should be the output of the rule? In other words, what is
the “runtime” representation of a type? For typed lambda, we used the underlying host language’s
lambda representation, but there is no analogous construct for types. Thus, for types, we have
more freedom in what to put in the rule’s output. Any representation, however, has three criteria.
The first two, which are simple to understand, are: 1) it should uniquely identify the type and 2) it
should store the arguments to the type constructor. In Figure 4 (left), we use a named record→,
declared with struct, to represent the→ type. Thus, the output of the→ macro is a syntax object
of an application of → to its arguments.

The third criteria requires thinking about binding. In Figure 4 (right), the rule for→vid resembles
that of →, but differs in that: a), the type’s input has a name x; b) the output τout is checked in the
context of x because it may reference x; and c) for the type’s representation in the rule’s conclusion,
a lambda wraps and binds references to x in τ out. The last difference reveals the third criteria for
a type’s internal representation: it must comply with hygiene. Syntax objects must have a valid
binding structure at all times, or they are rejected during macro expansion. This last criteria is
key to getting boilerplate operations—such as substitution, alpha-equivalence, and environment
management—for free.

6This paper omits discussing the implementation of Type, which is not interesting, due to space. Note that the Cur language
in Section 5 supports a proper type universe hierarchy, as found in languages like Coq.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Dependent Type Systems as Macros 1:9

3.2 Type Checking Telescopes
The above tells us how to represent dependent types as macros, but dependent types and their
binding structure also complicate defining macros by pattern matching. Suppose we want to change
our function type rules to accommodate multiple arguments. In Figure 5 (left), the plain function
type may simply use the ellipses pattern, which effectively “maps” over the τins. For dependent
types, as in for →vid, this “map” operation is incorrect, and results in the wrong binding structure.
For example, the →wrong rule in Figure 5 (right) tries to use the same ellipses pattern as on the
left, but this type checks each argument’s type τin in a type environment with every argument
x bound, including itself. On the left, without dependent types, this is not a problem since types
cannot reference the term variables from the same type annotation.

(struct → (in out))
(define-tyrule (→ τin . . . τout) ≫

[⊢ τin ≫ τin ⇐ Type] . . .
[⊢ τout ≫ τout ⇐ Type]

[⊢ (#%app → (τin . . .) τout) ⇒ Type])

(struct →vid (types))
(define-tyrule (→wrong [x : τin] . . . τout) ≫

[[x ≫ x : τ in] . . . ⊢ [τin ≫ τ in ⇐ Type] . . .]
[[x ≫ x : τ in] . . . ⊢ τout ≫ τ out ⇐ Type]

[⊢ (#%app →vid (λ (x . . .) τ in . . . τ out)) ⇒ Type])

(define-tyrule (→vid [x ::: τin] . . . τout)
[[x ≫ x : τin ≫ τin ⇐ Type] . . . ⊢ τout ≫ τout ⇐ Type]

[⊢ (#%app →vid (λ (x . . .) τ in . . . τ out)) ⇒ Type])

Fig. 5. Some type rules for multi-arity function types, (left)→, (right)→vid

Instead, to use familiar macro notation to implement dependent types, we require that ellipses
express a “fold” operation for recursively applying macro expansion (i.e., type checking) to express
the proper binding structure. Since environments themselves contain type annotations, this fold
operation must interleave binding and checking. In Figure 6, we present such a fold operation
which is part of the “dependent type systems as macros” core API (i.e., an extension to the core API
discussed in Section 2 needed to support dependent types). This new function consumes a name x,
a target to check τ , an expected type κexpected for τ , and a previous context, and it checks that τ
has type κexpected while adding x and τ to create the next context. This new context is returned
along with expanded versions of x and τ .

(define (folding-check x τ κexpected #:ctx [ctxprev ()])

#:with [ctxnew x τ] (synth x #:ctx ([x τ] ctxprev))
#:with κ (detach τ ’type)
(if (τ= κ κexpected) (ctxnew x τ) (err "type mismatch")))

Fig. 6. A folding variant of the check API function from Figure 3.

In our extension to Turnstile, we interpose on the ellipses to use folding-check instead of
check when appropriate. In Figure 5 (right), we give the corrected definition of→vid using the new
Turnstile syntax [x ≫ x : τin ≫ τin ⇐ Type] . . ., which checks each τin, but also names it
so that subsequent type checking invoked by the ellipses may reference the argument. Since the
new syntax both checks and binds, subsuming what is typically on the left and right side of the (⊢),
programmers may use it on either side, e.g., the following is equivalent to the definition in Figure 5:
(define-tyrule (→vid [x ::: τin] . . . τout)
[⊢ [x ≫ x : τin ≫ τin ⇐ Type] . . . [τout ≫ τout ⇐ Type]]

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

[⊢ (#%app →vid (λ (x . . .) τ in . . . τ out)) ⇒ Type])

Note that a single lambda wrapping all the types in the macro’s output is sufficient due to hygiene.
There will be no capture so long as each type was expanded in the appropriate context.

3.3 Macros for Pattern Matching
In general, the programmer does not need to know the underlying “run-time” type representation,
and would prefer to simply pattern match on the surface syntax of the type instead of the “run-time”
representation produced by macro expansion. In Turnstile, we can define “pattern” macros for
each type, as in Figure 7. This macro is used exclusively in pattern positions and it matches on, but
hides, a type’s internal representation.7 While this feature is not strictly necessary, it relieves some
notational burden for programmers implementing “dependent type systems as macros.”

(define-m (∼→vid [x : τin] . . . τout) (#%app →vid (λ (x . . .) τin . . . τout)))

Fig. 7. Pattern matching macro for the→vid type.

3.4 Putting It All Together
We’ve now seen all the components necessary to define dependent types as macros: a struct

record declaration for the internal representation, a define-tyrule implementing the rule for type
construction and elaborating to the struct, and one or more pattern macros. As a convenience, we
add a new construct to Turnstile, define-type, that automatically generates the boilerplate and
allows language implementors to simply write down the rule for well-formed dependent types.
In Figure 8, we show how to implement (a simplification of) the typing rules for Typed Video

using the approach we’ve presented, and our extensions to Turnstile. We see that integer terms
may be lifted to the type level via the Producer type constructor. The new lambda rule resembles
the rule for →vid from Figure 4, except a lambda has the →vid type. Similarly, the application rule
requires that the type of its operator matches a→vid type, and that its argument has the type of
the →vid type’s inputs.
The lambda rule is a multi-clause define-tyrule, analogous to multi-clause macros, because we

only wish to allow lifting of integer terms to the type level. Notice that the first clause identifies
Int cases with the ∼Int pattern macro generated by define-type. When the parameter does not
have integer type, type checking falls through to the second clause, where the output →vid type is
constructed with a fresh dummy name, so it may not be referenced in subsequent types. As expected,
in the output of the appvid type rule, we substitute references to the binder in τ out with the argument
from the application.

3.5 Type-Level Computation
Since types may contain integer expressions, we must add type-level computation to normalize
the types thus the integer constraints. We present two approaches to type-level computation “as
macros”: a simple approach here, and a more modular and extensible approach in Section 4.
To enable the first approach, we again modify the “dependent types as macros” core API. First,

we add a new interposition point in the assign metafunction, so the new definition is the following.
(define (assign e τ) (attach e ’type (τ-eval τ)))

The interposition point τ-eval enables customization of type normalization. Since assign is
implicitly called in the conclusion of every define-tyrule, interposing on τ-eval allows us to inject
7The pattern macros could have the same name as its analogous type, but to better distinguish pattern positions we (and
Turnstile) follow Racket’s convention of prefixing pattern macros with ~. See Figure 8 for a usage of a pattern macro.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Dependent Type Systems as Macros 1:11

#lang turnstile typed/video

(provide (rename [λvid λ] [appvid #%app])
(define-type Int : Type)
(define-type Producer : Int -> Type)
(define-type →vid #:binders ([X : Type]) : Type)

(define-tyrule λvid
[(_ [x ::: τin] e) ≫ ; Int case
[⊢ τin ≫ ∼Int ⇐ Type]
[[x ≫ x : Int] ⊢ e ≫ e ⇒ τout]

[⊢ (λ (x) e) ⇒ (→vid [x : Int] τout)]]

[(_ [x ::: τin] e) ≫

[⊢ τin ≫ τin ⇐ Type]
[[x ≫ x : τ in] ⊢ e ≫ e ⇒ τout]

[⊢ (λ (x) e) ⇒ (→vid [dummy : τ in] τout)]])

(define-tyrule (appvid f e) ≫

[⊢ f ≫ f ⇒ (∼→vid [x : τ in] τ out)]
[⊢ e ≫ e ⇐ τ in]

[⊢ (#%app f e) ⇒ (subst e x τ out)])

Fig. 8. Typed Video type definitions, lambda, and function application rules.

#lang turnstile typed/video

(define- τ-eval

[nint n] [bbool b]
[(+ n m) #:with n*int (τ-eval n) #:with m*int (τ-eval m) (+ n*.val m*.val)]

[(< n m) #:with n*int (τ-eval n) #:with m*int (τ-eval m) (< n*.val m*.val)]

[(Producer n) (Producer (τ-eval n))]

[other other])

Fig. 9. Excerpt of type-level evaluation in the Typed Video language.

the needed behavior. By default, τ-eval just expands a type; for Typed Video, we implement an
interpreter for the index language. Figure 9 shows a (simplified version of) this function. We use
define- τ-eval to redefine the τ-eval function used by other type rules. The definition is a series
of pattern-body clauses. When τ-eval is called with a type τ , the first clause whose pattern matches
τ is used. The first two clauses match literal values. The third clause matches on addition. This
clause first recursively calls τ-eval on the arguments. If evaluating those terms produce syntactic
literal numbers, then the actual arithmetic operation is performed. This fourth case is similar. If the
input to τ-eval is a Producer, then its index is evaluated, otherwise the type is left unchanged.

4 A DEPENDENTLY-TYPED CALCULUS
The approach to type-level computation for the Typed Video language in Section 3 suffices when
the index language is simple. It does not scale well when, for example, we want to define new
reduction rules that can be used both for run-time and during type checking, as is common in type
theory. This section presents a more general, extensible approach to adding type-level computation
via macros where types and terms may mix.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

Again, we do this in the context of an example language. We start with essentially the Calculus
of Constructions (CC) [Coquand and Huet 1988], which features “heavyweight”, also called full-
spectrum, dependent types, in which there is no distinction between terms and types. We gradually
extend our initial implementation with type schemas, ala Martin-Löf Type Theory [Martin-Löf
1975], and finally extend to the Calculus of Inductive Constructions [Pfenning and Paulin-Mohring
1989]. This demonstrates that our approach scales to the same calculi used in contemporary proof
assistants. Each extension is entirely modular: it does not requiring modifying any prior code, and
only defines new macros. This demonstrates key features of the “dependent type systems as macros”
approach: modularity and extensibility.

We start by upgrading Figure 2’s simply-typed language into CC by:
(1) changing the → type into a Π type, whose output type can refer to its input type;
(2) modifying the lambda and application rules to introduce and eliminate the Π type; and
(3) implementing reduction rules for type-level computation.

We first present the key concepts as they apply to macro systems in general, and then the new
Turnstile abstractions that support on-paper notation.

4.1 Defining Type-Level Reductions
Figure 10 presents dep-lang, a dependent calculus with Π types, i.e., dependently typed functions.
The new lambda rule introduces the Π type and the function application rule eliminates it. The key
difference from Typed Video’s calculus is in the conclusion of the function application rule.

#lang turnstile
(provide Π (rename [λdep λ] [appdep #%app])
(define-type Π #:binders ([X : Type]) -> Type)
(define-tyrule (appdep f e) ≫

[⊢ f ≫ f ⇒ (∼Π [X : τ in] τ out)]
[⊢ e ≫ e ⇐ τ in]

[⊢ (β f e) ⇒ (⇑/v1 (subst e X τ out))])

dep-lang

(define-tyrule (λdep [x : τ] e) ≫

[⊢ τ ≫ τ ⇐ Type]
[[x ≫ x : τ] ⊢ e ≫ e ⇒ τ out]

[⊢ (λ (x) e) ⇒ (Π [x : τ] τ out)])

Fig. 10. A dependently-typed lambda calculus.

In appdep’s output type, we replace the Π type binder x with the argument of the application e.
To support arbitrary run-time terms in the type system, the type is also wrapped with a “reflect”
operation ⇑/v1 that will be explained in detail shortly. To implement the reduction rule for Π, the
output “term” (which is also a type) is wrapped with a β macro which implements the reduction
rule for Π, enabling evaluation during type checking.
Figure 11 defines the β-reduction rule as a macro. The β macro expands its head expression

and matches on that result using an explicit syntax-parse syntax pattern matcher. If the expanded
head matches a λ (first case), occurrences of the λ parameter x in the body are replaced with the
argument e. Performing the reduction, however, may create additional redexes, for example if the
argument itself is a function. To further reduce these new redexes in the contractum, we need to
“reflect” references to run-time representations #%app back to β , and the ⇑/v1 function performs
this operation. Otherwise (second case), the result is an unreduced run-time #%app term.

While Figure 11 conceptually captures our approach to type-level computation via macros, this
obvious implementation is not extensible since the reflection operation would need to know about
all possible reduction rules in advance. Instead, we add a new core API function ⇑ for reflection,
defined in Figure 12, which is extensible via annotation on syntax objects. Instead of just replacing

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Dependent Type Systems as Macros 1:13

(define-m (β f e)
(syntax-parse (local-expand f)
[(λ (x) body) (⇑/v1 (subst e x body))]
[f (#%app f e)]))

(define (⇑/v1 e) (subst β #%app e)) ; fn mapping #%app back to β ; not extensible

Fig. 11. Beta reduction rule, implemented as a plain macro.

#%app, it traverses a piece of syntax and checks for the syntax property ’reflected-name. If the
property exists, the value associated with the key is used as the reflected name. The mk-reflected

function expects a placeholder, an identifier to use as the run-time representation of the elimination
form, and attaches a given identifier for use as the ’reflected-name property. For example, the
placeholder for application is #%app, and the reflected id will be the β macro.

(define (⇑ e) ; extensible fn mapping terms to surface stx
(syntax-parse e

[placeholderid (detach placeholder ’reflected-name)]
[(e . . .) ((⇑ e) . . .)]
[else e]))

(define (mk-reflected placeholder reflected-id)
(attach placeholder ’reflected-name reflected-id))

; example: ((mk-reflected #%app β) (λ (x) x) (λ (x) x)) = (#%app (λ (x) x) (λ (x) x))
; example: (⇑ (mk-reflected #%app β)) = β
; example: (⇑ ((mk-reflected #%app β) (λ (x) x) (λ (x) x))) = (β (λ (x) x) (λ (x) x))
; example: (local-expand (⇑ ((mk-reflected #%app β) (λ (x) x) (λ (x) x)))) = (λ (x) x)

Fig. 12. Core API for reflection

This API, while small involves a fundamental change in howmacro expansion proceeds. Typically,
we think of the work flowwith macros as: 1) macro expansion, 2) runtime evaluation. In the previous
“type systems as macros” work, this changes to: 1) macro expansion + type checking (interleaved)
2) runtime. Macro expansion is interleaved with type checking, since the type system is defined
in macros. This requires communicating types between macros, which happens through syntax
properties on syntax objects. With our extension to the “types systems as macros” API, this changes
again. Instead, we have: 1) macro expansion + type checking + evaluation (interleaved), 2) runtime
evaluation. All are mutually recursive and we must coordinate information between each stage.
Now we must communicate how a reduced term corresponds to a type (i.e., macro), and therefore,
to its own type-level reduction semantics; this is the role of the reflection API above. We describe
this interleaved semantics and the requirements it imposes on macros systems in Appendix B.
For our Turnstile implementation, we add abstractions to avoid the boilerplate in the pattern

described above. Figure 13 defines define-red, a macro-definingmacro. Given a redex and contractum,
it generates macros like β in Figure 11, where the generated macro automatically handles reflecting
the contractum with ⇑. In essence, multiple define-red declarations cooperate with each other
through the API in Figure 12.

The definition of define-red is a multi-clause macro, which itself generates a macro representing
a reduction rule, such as β , but automatically inserts the ⇑ and mk-reflected calls as required. The

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

(define-m define-red ;Turnstile form for defining reduction rules
[(define-red red-name redex ~>~>~> contractum) ; single-redex case
(define-red red-name [redex ~> contractum])] ; rewrite to match second case
;multi-redex case
[(define-red red-name [(placeholder redex-hd redex-rst . . .) ~>~>~> contractum] . . .)
⌜(define-m (red-name hd arg . . .) ⌝

(syntax-parse ((local-expand hd) arg . . .)
[(redex-hd redex-rst . . .) (⇑ contractum)] . . .

⌞ [(e . . .) ((mk-reflected placeholder red-name) e . . .)]))⌟])

Fig. 13. Turnstile form for defining reduction rules.

(define-red β (#%app (λ (x) body) e) ~> (subst e x body))

Fig. 14. Beta reduction rule, implemented with define-red.

first case is short-hand for easy reduction rules, and recursively calls define-red to invoke the second
case. The second case accommodates multiple redexes and contractums. (The output of the second
clause is marked with ⌜⌞⌝⌟ instead of the usual blue text color, to avoid obscuring nested patterns and
templates in the generated macro.) The generated reduction macro, red-name, behaves essentially
like a generalized version of β in Figure 11. More specifically, red-name expands the head, and if
it matches the supplied redex, rewrites it to the specified contractum. Otherwise, it expands to a
term represented by the placeholder but marked with reflection property ’reflected-name. If further
evaluation (i.e., macro-based reductions) causes the term to become redex, then ⇑ ensures that
red-name is invoked again to reduce the redex. Figure 14 shows the definition of the β-reduction rule
implemented with Turnstile’s define-red, where the redex is a macro pattern from the underlying
macro system and the contractum rewrites components of that pattern. This definition concisely
matches how such a rule would be written in a textbook.

4.2 A Little Sugar
The dep-lang language from Figure 10 and Figure 14 is equivalent to the Calculus of Constructions
(CC) [Coquand and Huet 1988]. There are many tutorials on implementing dependent types, and
they typically end here, but it is very difficult to actually program or prove with CC. Fortunately,
a fundamental feature of the “(dependent) type system as macros” approach is that DSLs gain
extensibility via macros, for free. We demonstrate this for dependent types in Figure 15, which
presents dep-lang/sugar, a library that adds syntactic sugar for dep-lang using macros—local,
modular elaboration passes. In contrast, a typical implementation of a dependently-typed lan-
guage would add a whole-program elaboration pass on top of the core. We subsequently use our
dep-lang/sugar library to add additional type schemas.

We define automatically-currying, multiple-argument versions of Π, λ, and function application.
Wemay also define→ and ∀ as shorthands forΠ, where the former generates an arbitrary name, and
the latter inserts implicit Type annotations. These new variations are exported with the same name
as their single-arity versions, using the interposition feature of the macro system to interpose on the
definitions from dep-lang. Thus new dep-lang programs importing this library will automatically
use the new sugary forms.
The last macro in our library, define-data-constructor, wraps define-type with the just-defined

λ/c to allow partial application of its constructor. Like define-type, define-data-constructor supports
syntax for declaring data structures with either named or unnamed arguments.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Dependent Type Systems as Macros 1:15

#lang dep-lang dep-lang/sugar

(provide → ∀ (rename [λ/c λ] [app/c #%app] [Π/c Π]))
(define-m Π/c

[(_ e) e]
[(_ x . rst) (Π x (Π/c . rst))])

(define-m (→ τin . . . τout) (Π [TMP : τin] . . . τout)) ;TMP fresh
(define-m (∀ X . . . τ) (Π [X : Type] . . . τ))
(define-m λ/c

[(_ e) e]
[(_ x . rst) (λ x (λ/c . rst))])

(define-m app/c
[(_ e) e]
[(_ f e . rst) (app/c (#%app f e) . rst)])

(define-m define-data-constructor

[(define-data-constructor name ::: τ . . . →→→ τout)
(define-data-constructor name : [TMP : τ] . . . → τout)] ;TMP fresh

[(define-data-constructor name ::: [x ::: τ] . . . →→→ τout)
⌜(define-type name : [x : τ] . . . -> τout) ⌝
(define-m name (λ/c [x : τ] . . . (name x . . .)))
⌞(define-m ∼name ∼name) ⌟)

Fig. 15. A dep-lang library that adds some syntactic sugar, e.g., currying.

4.3 A Library of Natural Numbers
Technically, we could Church-encode all our programs and proofs, but this is somewhat impractical.
Luckily, we have already developed all tools to extend dep-lang with new datatypes. Figure 16
extends dep-lang with a natural number library, using a type schema in the style of Martin-Löf
Type Theory [Martin-Löf 1975]. Each type schema defines a type, an introduction rule, and an
elimination rule; we ignore equivalence rules for this presentation. Specifically, we define Nat

using the Turnstile define-type form. We use the define-data-constructor variant of define-type

(from Figure 15) to define the standard introduction rules, Z and S, corresponding to “zero” and
“successor”. The elimination form, elimNat, corresponds to a fold over the datatype. Following the
terminology of McBride [2000], the form (elimNat n P mz ms) takes target to eliminate n, a motive
P that describes the return type of this form, and one method for each case of natural numbers: mz
when n is zero and ms when n is the successor of a number. Method mz must have type (P Z), i.e.,
the motive applied to zero, while ms must have type (Π [k : Nat] (→ (P k) (P (S k)))), which
mirrors an induction proof: for any k, given a proof of (P k), we show (P (S k)).
Using define-red, we can define reduction rules for elimNat, one each for Z and S, as succinctly

as in a textbook. Observe that the pattern macros ∼Z and ∼S, defined by define-type, are useful
when specifying the reduction. For convenience, the dep-lang/nat library also extends #%datum,
an interposition point for interpreting literal data. With new-datum, users of the dep-lang/nat
library can write numeric literals in place of the more cumbersome Z and S constructors. The last
new-datum clause falls back to the current #%datum, making this library compatible with other literal
data. We can even support diamond extensions by importing two existing versions of #%datum
(under different names) and using them in separate new-datum clauses and, of course, writing some
macros to automate such boilerplate.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

#lang dep-lang dep-lang/nat

(provide Nat Z S elimNat (rename [new-datum #%datum]) +)

(define-type Nat : Type)
(define-data-constructor Z : Nat)
(define-data-constructor S : Nat → Nat)

(define-tyrule (elimNat n P mz ms) ≫

[⊢ n ≫ n ⇐ Nat] ; target[
⊢ P ≫ P ⇐ (→ Nat Type)

]
; prop / motive[

⊢ mz ≫ mz ⇐ (P Z)
]
;method for Z[

⊢ ms ≫ ms ⇐ (Π [k : Nat] (→ (P k) (P (S k))))
]
;method for S

[⊢ (evalNat n P mz ms) ⇒ (P b)])

(define-red evalNat

[(elimNat ~Z P mz ms) ~> mz]
[(elimNat (~S k) P mz ms) ~> (ms k (evalNat k P mz ms))])

(define-m new-datum
[(new-datum nnat) #:when (zero? n) Z]
[(new-datum nnat) (S (new-datum (- n 1)))]
[(new-datum x) (#%datum x)]))

(define + ; implements n + m
(λ [n : Nat]
(elimNat n
(λ [m : Nat] (→ Nat Nat))
(λ [m : Nat] m)
(λ [n-1 : Nat] [ih : (→ Nat Nat)] (λ [m : Nat] (S (ih m)))))))

Fig. 16. A dep-lang library for natural numbers.

4.4 An Equality Type Library, and Applying Telescopes
Figure 17 shows an implementation of the standard equality, or identity, type. The elim= rule
resembles elimNat from Figure 16: for any motive P such that (P a) holds, eliminating a proof that
a = b allows concluding that (P b) holds.

The implementation of elim= demonstrates the implicit support for telescopes we’ve added to
Turnstile to simplify implementing dependent types. The arguments are named and subsequent
arguments may reference previous names. Note that checking a telescope and applying a constructor
with telescoping arguments, which involves substitution, are two distinct operations. Section 3.2
presented our implementation of abstractions for the former; the rest of this subsection addresses
the latter with a novel, pattern-based substitution technique for instantiating types in a telescope.
Figure 18 shows the relevant parts of define-type, which generates a define-tyrule that uses

this technique. define-type first validates the κin. . .κout annotations supplied by the programmer,
using the new folding-check from Section 3.2. The conclusion (a ≻ variant accommodates emitting
definitions) produces the type rule for constructing name types.
The key is the reuse of the A . . . pattern variables from the premises of the define-type as the

pattern variables of the generated define-tyrule. When the name type constructor is called, A is bound
to the arguments supplied to that constructor. Since A binds references in κin . . ., use of κin . . . in

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Dependent Type Systems as Macros 1:17

#lang dep-lang dep-lang/eq

(provide = refl elim=)

(define-type = : [A : Type] [a : A] [b : A] → Type)
(define-data-constructor refl : [A : Type] [e : A] → (= A e e))

(define-tyrule (elim= t P pt w peq) ≫

[⊢ t ≫ t ⇒ A][
⊢ P ≫ P ⇐ (→ A Type)

][
⊢ pt ≫ pt ⇐ (P t)

]
[⊢ w ≫ w ⇐ A][
⊢ peq ≫ peq ⇐ (= A t w)

]

[⊢ pt ⇒ (P w)])

Fig. 17. A dep-lang library for the equality type.

the output syntax template automatically instantiates any As in κin with the concrete arguments to
the name type constructor, which is the desired behavior. In other words, we hijack substitutions
that the macro system already performs with pattern variables in templates to instantiate type
variables. The technique is safe, i.e., no variables are captured, thanks to hygiene.

(define-tyrule (define-type name ::: [Aid ::: κin] . . . →→→ κout) ≫[[
A ≫ A : κin ≫ κin ⇐ Type

]
. . . ⊢ κout ≫ κout ⇐ Type

]

[≻ ⌜(define-tyrule (name A ...) ≫⌝[

⊢ A ≫ A ⇐ κin

]
. . .

[⊢ (name A . . .) ⇒ κout])
⌞ ; rest of the macro elided ⌟])

Fig. 18. (Part of) the implementation of define-type.

With numbers and equality, we can now write a simple example proof in dep-lang. Figure 19
proves the additive identity of the natural numbers. The left identity is simple since + is defined by
recursion on its first argument and (+ 0 n) trivially reduces to n. The right identity requires an
argument by induction, since (+ n 0) cannot evaluate until we know more about n.

4.5 Indexed Inductive Type Families
Turnstile easily supports type schemas, but type schemas are a modification to the trusted
core. Realistic proof assistants instead support safe extension through inductively-defined type
families Dybjer [1994]. Inductive types can be implemented in one set of general-purpose rules
that are proven sound, and then users can declare new inductive types without extending the
trusted core. Adding indexed inductive type families is straightforward using the constructs we
have already presented.

Figure 21 presents define-datatype, which enables defining inductive types. Our version is based
on Brady’s presentation of TT [Brady 2005]. The complete implementation requires 18 lines of

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

#lang dep-lang dep-lang-prog

(require dep-lang/nat dep-lang/eq)
(ann (λ [n : Nat] (refl Nat n)) : (Π [n : Nat] (= Nat (+ 0 n) n)))
(ann (λ [n : Nat]

(elimNat n
(λ [m : Nat] (= (+ m 0) m))
(refl Nat 0)
(λ [k : Nat] [p : (= (+ k 0) k)]
(elim= (+ k 0)

(λ x (= Nat (S (+ k 0)) (S x)))
(refl Nat (S (+ k 0)))
k
p))))

: (Π [n : Nat] (= Nat (+ n 0) n)))

Fig. 19. An example dep-lang program: proving additive identity.

code.8 It makes dep-lang equivalent to the Calculus of Inductive Constructions, i.e., the core of the
Coq proof assistant, demonstrating that “dependent type system as macros” scales to expressive
type theories, and supports on-paper notation even for advanced typing rules like inductive types.

A : ⋆ n : N
Vec A n : ⋆

where
nil : Vec A 0

k : N x : A xs : Vec A k

cons x xs : Vec A (S k)

#lang dep-lang list-prog

(define-datatype Vec [A : Type] : [i : Nat] → Type
[nil : (Vec A 0)]
[cons : [k : Nat] [x : A] [xs : (Vec A k)] → (Vec A (S k))])

Fig. 20. Indexed list data definitions, (Top) by hand, and (Bottom) in dep-lang.

To help our explanation of define-datatype, we beginwith a concrete example. Figure 20 shows two
length-indexed list data definitions, the first using a natural deduction style as commonly written in
the literature (e.g., [McBride and McKinna 2004]) and the second as written with define-datatype in
dep-lang, which is based on Coq’s notation. The main source of complexity compared to previous
type definitions is that indexed inductive type families distinguish between parameters (the A in
the figure), and indices (the i in the figure). Briefly, parameters are invariant across the definition
while indices may vary. The key is that in both the formal notation and the code, the rules for the
data constructors reference the parameter A that is bound in the type definition, while the index
argument is specific to each rule. It turns out that this invariance of parameters can be used to
simplify the implementation of define-datatype, as the following prose explains.

At a high-level, define-datatype is “just” a macro that produces four output definitions:
(1) a define-type type definition;
(2) define-data-constructor data constructor definitions;
(3) a define-tyrule elimination rule; and
(4) a define-red reduction rule.

8Admittedly, we elide positivity checking for simplicity.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Dependent Type Systems as Macros 1:19

#lang turnstile dep-lang

(define-tyrule (define-datatype TY [A ::: τA] . . . ::: [i ::: τi] . . . →→→ τ
[C ::: [i|x ::: τin] . . . →→→ τout] . . .) ≫

[
[
A ≫ A : τA ≫ τA ⇐ Type

]
. . .

[[
i ≫ i : τi ≫ τi ⇐ Type

]
. . . ⊢ τ ≫ τ ⇐ Type

][[
i|x ≫ i|x : τin ≫ τin ⇐ Type

]
. . . ⊢ τout ≫ τout ⇐ Type

]
. . .]

#:with (TY _ . . . τouti . . .) (τout . . .)

#:with (((irec . . . xrec) . . .) . . .) (find-recur (([i|x τin] . . .) . . .) TY)

[≻ ⌜(define-type TY : [A : τA] . . . [i : τi] . . . → τ) ; define the type and constructors ⌝

(define-data-constructor C : [A : τA] . . . [i|x : τin] . . . → τout) . . .

(define-tyrule (elimTY v P m ...) ; eliminator for TY
[⊢ v ≫ v ⇒ (∼TY A . . . iinferred . . .)] ; target[
⊢ P ≫ P ⇐ (Π [i : τi] . . . (→ (TY A . . . i . . .) Type))

]
;motive

[⊢ m ≫ m ⇐ (Π [i|x : τin] . . .

(→ (P irec . . . xrec) . . . (P τouti . . . (C A . . . i|x . . .))))] . . .

[⊢ (evalTY v P m . . .) ⇒ (P iinferred . . . v)])

(define-red evalTY ; define reduction rule
⌞ [(elimTY (~C A . . . i|x . . .) P m . . .) ~> (m i|x . . . (evalTY xrec P m . . .) . . .)] . . .) ⌟])

Fig. 21. Implementation of define-datatype makes dep-lang equivalent to CIC.

But the details are dense so we go line-by-line.
• (define-tyrule (define-datatype TY [A ::: τA] . . . ::: [i ::: τi] . . . →→→ τ

[C ::: [i|x ::: τin] . . . →→→ τout] . . .)

This defines a new type checkingmacro named define-datatype. The first part of the inputs consists
of the name of a new type TY, its parameter names A . . ., the types of those parameters τA . . .,
index names i . . ., and the types of those indices τi Together, [A : τA] . . . [i : τi] . . . is a
telescope, where each τA . . . τi . . . may reference the names that come before it. The result type
of the type constructor TY itself is the type τ . The second line of the input specifies the constructors
for TY, C The type of the constructors is described by the telescopes [i|x : τin] . . . (where
i|x is a literal identifier). Finally, a fully-applied constructor has type of shape τout, which we refine
later. The key is that the A binders range over the entire declaration, i.e., the τin and τout types may
also reference A, which is not true of the i binders.
•[

[
A ≫ A : τA ≫ τA ⇐ Type

]
. . .

[[
i ≫ i : τi ≫ τi ⇐ Type

]
. . . ⊢ τ ≫ τ ⇐ Type

][[
i|x ≫ i|x : τin ≫ τin ⇐ Type

]
. . . ⊢ τout ≫ τout ⇐ Type

]
. . .]

These premises validate that the types supplied by the programmer in a define-datatype decla-
ration have type Type. It uses the new folding Turnstile syntax introduced in Section 3.2, but
with a new twist. Since the A ranges over the entire definition, we are essentially checking nested
telescopes; Turnstile supports this, using the slightly altered syntax, compared to Section 3.2,
above.
• #:with (TY _ . . . τouti . . .) (τout . . .)

This extracts the index arguments in the data constructor output types and binds them to the
τouti. . . pattern, which is later used to check the eliminator methods. For example, τouti. . . would
correspond to 0 and (S k) in Figure 20’s definitions.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

• #:with (((irec . . . xrec) . . .) . . .) (find-recur (([i|x τin] . . .) . . .) TY)

This line finds the recursive arguments for each constructor C. The function, find-recur (elided),
returns arguments xrec ∈ i|x . . .whose type is equal to TY. In addition, find-recur finds the indices
irec . . . ⊆ i|x . . . that the type of xrec references.
• (define-type TY : [A : τA] . . . [i : τi] . . . → τ)

This defines type TY, using parameters and indices given to define-datatype.
• (define-data-constructor C : [A : τA] . . . [i|x : τin] . . . → τout) . . .

This line defines data constructors C . . ., with the type specified in the input to define-datatype.
It uses the define-data-constructor form, from dep-lang/sugar, so that the constructors may be
partially applied. Note that parameters [A : τA] . . . are added to each constructor declaration.
• (define-tyrule (elimTY v P m ...)

This implements the type rule for the eliminator named elimTY, which has three kinds of inputs:
a target v, a motive P, and methods m . . ., one for each C
• [⊢ v ≫ v ⇒ (∼TY A . . . iinferred . . .)]

The target v must have type TY, with parameters bound to A . . . and indices to iinferred This
reuse of pattern variables A . . . (from the premises to define-datatype) is instance of the pattern-
based type instantiation technique introduced in Section 4.4. Within this elimination rule, any
other pattern variables from define-datatype’s input with references to A . . ., e.g., τA, τi, or τin, will
automatically be instantiated with v’s parameters by the macro system. Note that we do not use
this technique for the indices. Instead we bind new pattern variables iinferred
•

[
⊢ P ≫ P ⇐ (Π [i : τi] . . . (→ (TY A . . . i . . .) Type))

]
The motive P is a function that consumes indices i. . . and a value with type TY at those indices,

and returns a type that is the result of the elimination. Here τi. . . are the types of indexes specified
in the input to define-datatype, but automatically instantiated with the inferred concrete parameters
of the target v. The A . . . passed to TY are those same parameters.
• [⊢ m ≫ m ⇐ (Π [i|x : τin] . . .

(→ (P irec . . . xrec) . . . (P τouti . . . (C A . . . i|x . . .))))] . . .

A call to the eliminator must include one method for each constructor C Each method m

consumes the constructor inputs [i|x : τin] . . ., as specified in the input to define-datatype, and an
argument for each recursive argument xrec. These latter arguments represent recursive applications
of the eliminators, so have types specified by the motive P, i.e., (P irec . . . xrec) The type
(P τouti. . . (C A . . . i|x . . .)) of each method’s result is also determined by the motive. The τouti. . .
comes from the constructor output types specified in the input to define-datatype.
• [⊢ (evalTY v P m . . .) ⇒ (P iinferred . . . v)])

The eliminator output calls reduction rule evalTY to reduce redexes where v is a fully-applied
constructor. Its type is determined by the motive applied to the indices of the target v and v itself.
• (define-red evalTY

[(elimTY (~C A . . . i|x . . .) P m . . .) ~> (m i|x . . . (evalTY xrec P m . . .) . . .)] . . .))

The last definition produced by a define-datatype declaration is a reduction rule consisting of
a series of redexes, one for each constructor C The rule states that elimination of a fully-
applied constructor C reduces to application of the method for that constructor, where the recursive
arguments to the method are additional invocations of the eliminator on the recursive constructor
arguments. Observe how the macro system’s pattern language naturally associates each C with its
method m, again leading to concise definition that matches what language designers write on paper.
For comparison, see the specification of inductive type families from Brady [2005].

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Dependent Type Systems as Macros 1:21

5 CUR: A PROOF ASSISTANT AS MACROS
To demonstrate that our approach scales to a realistic language, we implemented a prototype
proof assistant called Cur. Proof assistants based on dependently-typed languages are unusual in
that they directly implement a formal calculus—typically intended as only a theoretical model of
computation—as their core language, thus ensuring a small, consistent, trusted computing base.
Cur’s core is the dep-lang dependent calculus presented in Section 4. To make programming
and proving in a calculus practical, proof assistants typically build separate layers of features and
DSLs, such as unification for generating annotations, notational support to generating definitions,
or tactic systems for constructing proofs. By building Cur with macros from the beginning, we
already have a framework in which we, and Cur users, can easily build such DSLs. Further, all new
DSLs are integrated into the language, instead of as third-party preprocessors.

This section presents two such DSLs:Olly—a DSL for modeling programming languages inspired
by Ott [Sewell et al. 2007]—and ntac— a tactic language for scripting proofs. These DSLs elaborate
to core Cur during macro expansion, but before type checking, and thus we are able to extend the
functionality of our language yet keep the trusted base small. We demonstrate how these DSLs
simplify formal development by allowing users to express programs and proofs using familiar
notation, rather than the syntax of dependent type theory.

5.1 Olly
Olly is an Ott-like [Sewell et al. 2007] DSL formodeling programming languages inCur. Specifically,
programmers may write BNF notation or inference rule notation to specify language syntax and
relations, respectively, and Olly automatically generates the inductive type definitions to represent
them. Both notations support extracting the models to LATEX and Coq, in addition to using the
models directly in Cur. Unlike Ott, however, which is an external tool chain, Olly is a user-written
library for Cur. As such, it can take advantage of the existing elaboration framework, and is
integrated into the standard Cur development environment and language.
Figure 22 shows how one may define the syntax of a simply-typed λ-calculus using Olly. This

language includes booleans, unit, pairs, and functions. The definition uses standard BNF notation,
with optional annotations of the form #:bind <var> to specify a binding position. Note that the
let form eliminates pairs in this language, and thus binds two names.

#lang cur olly-prog

(require cur/olly)
(define-language stlc #:vars (x)
#:output-coq "stlc.v" #:output-latex "stlc.tex"
val (v) ::= true false unit
type (A B) ::= boolty unitty (-> A B) (* A A)
term (e) ::= x v (lambda (#:bind x : A) e) (app e e)

(cons e e) (let (#:bind x #:bind x) = e in e))

Fig. 22. An STLC example using Olly, a notation extension for Cur.

The first argument, stlc, is the language name. The next three are optional arguments: #:vars
specifies meta-variables for variables in the syntax; #:output-coq specifies a Coq output file; and
#:output-latex specifies a file for a LATEX rendering of the BNF grammar. After the optional argu-
ments, an arbitrary number of non-terminal definitions are specified.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

The define-language form generates an inductive type definition for each non-terminal. It uses
the language name and the non-terminal names to generate the inductive type and the constructors.
For example, below is the definition generated for the term non-terminal.
(define-datatype stlc-term : Type

(Var->stlc-term : Var → stlc-term)
(stlc-val->stlc-term : stlc-value → stlc-term)
(stlc-lambda : stlc-type stlc-term → stlc-term)
(stlc-app : stlc-term stlc-term → stlc-term)
(stlc-cons : stlc-term stlc-term → stlc-term)
(stlc-let : stlc-term stlc-term → stlc-term))

It has a constructor for each kind of term. In addition, a conversion constructor is produced
for references to other non-terminals, e.g., Var->stlc-term. Internally, define-language uses an
intermediate Racket data structure to represent the grammar, which may then be converted to Cur,
Coq, LATEX, and other outputs. Since extensions are supported linguistically, programmers may use
Olly forms alongside normal Cur code, rather than switch to an external tool.
Olly demonstrates how “dependent types as macros” supports domain-specific modeling—here,

the domain is programming language theory. By starting from macros, the proof assistant is
extensible with domain-specific support by default, rather than as an after thought. We can tailor
all aspects of the proof assistant, from the object theory to the syntax, to our domain.

5.2 A Tactic Language
Tactic systems are a popular addition to proof assistants to enable interactive, command-based
construction of proof terms; some proof assistants even feature multiple tactic languages. A tactic
system also exercises many interesting features of the elaboration system—they require pre-type-
checking-time general purpose computation, traversal and pattern matching of object language
terms, interesting data structures in the elaboration system for manipulating proof states, an API
to the object language in order to type check and evaluate the terms while constructing proofs,
interactivity, and syntactic integration into the language. Amacro system, such as Racket’s, provides
all but the API to the object language, but by developing the type system as macros, we get this
meta-language API to the object language by construction.

For a simple example, in Figure 23, we present a hypothetical library of propositional logic, along
with a tactic, tauto, that automatically finds a term that proves the given type. The tactic is simply
a macro that traverses and pattern matches on terms. It uses the pattern combinators generated
by define-datatype, e.g., ∼True, along with the backtracking inherent in the matching algorithm, to
concisely specify the proof search. For more complex tactics, however, we require slightly more
than plain macros, e.g., to help maintain proof state and track intermediate theorems.

Thus, we create ntac, a tactic language for Cur. The ntac tactic system builds on the basic idea
of tactics as macros, but uses a zipper data structure to allow navigation of the proof term and
to track the program context. Rather than plain macros, ntac tactics are host-language (Racket)
functions over this zipper that are executed by the macro system during elaboration. While the
details of ntac’s navigation and construction of proof terms are not particularly novel as far as
tactic systems go, the use of macros allowed us to easily develop the tactic system and integrate it
into Cur.
To demonstrate how ntac integrates into Cur, here is an ntac proof for a trivial theorem.

#lang cur tactic-eg

(require cur/ntac)
(ntac (forall (A : Type) (a : A) A)

(by-intros A a)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Dependent Type Systems as Macros 1:23

(define-type False : Type)

(define-datatype True : Type
[I : True])

(define-datatype And [X : Type] [Y : Type] → Type
[conj : [x : X] [y : Y] → (And X Y)])

(define-datatype Or [X : Type] [Y : Type] → Type
[or-introL : [x : X] → (Or X Y)]
[or-introR : [y : Y] → (Or X Y)])

(define-m tauto
[(tauto ~True) I]
[(tauto (~And X Y))
#:with x (tauto #'X)
#:with y (tauto #'Y)
(conj X Y x y)]

[(tauto (~Or X Y))
#:with x (tauto #'X)
(or-introL X Y x)]

[(tauto (~Or X Y))
#:with y (tauto #'Y)
(or-introR X Y y)]

[(~fail "no proof") _])

Fig. 23. A library for type-level propositions.

(by-assumption))

The ntac form builds an expression given an initial goal, e.g., the polymorphic identity type, and a
tactic script. It is similar to Coq’s Goal, which introduces an anonymous goal that can be solved
using an Ltac script. Unlike Goal, however, ntac produces an expression, meaning it can be used
in any expression position in Cur, not just as a top-level command. This is the natural design
for ntac, since macros are naturally extensions to the expression language. This example uses the
by-intros tactic, which takes arguments representing names to bind as assumptions in the local
proof environment. Then we conclude the proof with by-assumption, which takes no arguments
and searches the local environment for a term that matches the current goal. We can create a
define-theorem definition to assign a name to an ntac script, so it may be used to help with another
proof:
#lang cur tactic-eg

(define-theorem id (forall (A : Type) (a : A) A)
(by-intros A a)
(by-assumption))

A definition (define-theorem name goal script ...) is essentially syntactic sugar for (define
name (ntac goal script ...)).9 Implementationwise, ntac builds a proof tree data structure in
the metalanguage—i.e., Racket—that can represent partial Cur terms, e.g., terms with holes. The
tree is a single goal node, representing a completely unknown term of some type. Each tactic is an
operation that manipulates this tree, usually by changing the current goal node to a larger subtree
that represents a partial term with a new subgoal. Once there are no goals left, the tree is translated
into a Cur term. The ntac form then, simply applies tactics to this tree:
#lang cur ntac
(define-m (ntac goal tactic ...) (ntac-interp goal (list tactic ...)))

The ntac form calls ntac-interp, which constructs an initial proof tree from goal and runs each
tactic, in order, on the tree. If the resulting tree contains unsolved goals, it raises an error; otherwise,
it converts the tree to a Cur term. As an example, we define the intro tactic below.
#lang cur ntac
(define-tactic (intro name ctx prooftree)
(define goal (get-current-goal prooftree))
(ntac-match goal

9In fact, it is somewhat more complicated to support resugaring and rewriting.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

[(~forall (x : A) B)
(make-apply-node
goal
(make-ctxt-node
(λ (old-ctxt) (dict-set old-ctxt name A))
(make-new-goal (subst name x B)))
(λ (body-proof) (λ (name : A) body-proof)))]))

This tactic introduces a new variable, name when the goal has the shape (forall (x : A) B).
The tactic extracts the current goal from the proof tree and pattern matches on it. When the
goal matches, we construct a new proof tree using make-apply-node. This node describes how to
construct a term of type (forall (x : A) B), if it is provided a term body of type B. It then creates a
new subgoal from the type B (with references to x in B replaced with name) with make-new-goal. This
new goal is wrapped with a make-ctxt-node, which adds name bound to A in the environment. When
this proof tree is complete, the ntac-interp function will apply the Racket function on the last
line, (λ (body-proof) (λ (name : A) body-proof)), to the completed subtree that has replaced
(make-new-goal B). Observe how the coloring denotes the use of quasiquotation to build up the
term. More specifically, the outer lambda, produces the inner syntax object lambda, except it embeds
the variable name as its parameter, and body-proof as the body.

By using a flexible macro system as the basis for our tactic system, we can even equip user-defined
tactics with features like interactivity, as shown in Figure 24 (left). Specifically, the interactive

tactic uses the print tactic to print the proof state, then starts a read-eval-print-loop (REPL).
Figure 24 (right) shows an example interactive session. The REPL repeatedly reads in a command
and runs it via run-tactic; when it sees quit, it returns the proof tree.

(define-tactic (interactive pt)
(print pt)
(match (read-syntax)

[(quit) pt]
[tactic
(interactive (run-tactic pt tactic))]))

(ntac (forall (A : Type) (a : A) A)
interactive)

(forall (A : Type) (forall (a : A) A))
> (by-intro A)
A : Type

(forall (a : A) A)
....
> by-assumption
Proof complete.
> (quit) ; => < procedure >

Fig. 24. (Left) Implementation and use of interactivity tactic; (Right) An interactive proof session.

Our macros-based approach makes it simple to develop a prototype proof assistant capable of
realistic proofs. To demonstrate this, we used Cur and ntac to implement the exercises for several
chapters of the Software Foundations curriculum [Pierce et al. 2018], totaling several thousand lines
of proof scripts.10 Table 1 presents a list of tactics available in ntac. The rewrite tactics, where
most of the work lies, support two versions of the equality type: Coq’s default Paulin-Mohring
equality, and Martin-Löf’s original version. When applied to quantified hypotheses, these tactics
will try to automatically instantiate the theorems with a basic search over the current proof state.

assert intros assumption simpl obvious destruct

induction reflexivity interactive rewriteL rewriteR print

Table 1. List of tactics available in ntac.

10https://www.github.com/stchang/macrotypes, https://www.github.com/wilbowma/cur

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://www.github.com/stchang/macrotypes
https://www.github.com/wilbowma/cur

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Dependent Type Systems as Macros 1:25

6 FUTUREWORK
A interesting next step is to experiment with typed tactic DSLs, á la Mtac [Ziliani et al. 2013]’s design.
We conjecture that use of Racket’s #lang framework and Turnstile will make it straightforward
to do so. We also plan to experiment with automation and integration with other tools, e.g., by
calling out to solvers or even using the foreign-function interface during expansion.

Resugaring is another direction for future work. Since type checking is interleaved with macro
expansion, some effort is required to prevent abstraction leaks that could expose users to elaborated
syntax. For example Cur and ntac use resugaring during interactive proof sessions. The current
resugaring approach is rather ad-hoc, however, but recent advances [Pombrio and Krishnamurthi
2018] could help improve this part of the language, and apply generally to macro-based approaches.
Another solution could be to stage expansion to avoid the need for resugaring at all. We are
experimenting with “stop lists”, i.e., finer-grained knobs for controlling expansion, so that we can
maintain the benefits of type checking with macros, but do not expand beyond abstractions that
the user cares about during the process.

7 RELATEDWORK
Much has been written about implementing basic dependent types [Altenkirch et al. 2010;
Augustsson 2007; Bauer 2012; Löh et al. 2010; Weirich 2014]. All of these tutorials, however, start
from scratch and typically stop short of a practical language. For example, most manually deal
with type environments and rely on deBruijn indices for α-equality. Further, they do not include
practical features such as user-defined inductive datatypes, and they are not easily extensible with
sugar, interactivity, or other companion DSLs that programmers typically need to use with their
dependently-typed language. In contrast, we show how our macros-based approach enables both
rapid creation of a core dependently-typed language, and scales to a realistic full-spectrum proof
assistant with user-defined inductive datatypes and extensible notation.
Extending proof assistants is an active area of research. For example, some dependently-typed
languages have explored adding metaprogramming [Brady and Hammond 2006; Christiansen
2014; Devriese and Piessens 2013; Ebner et al. 2017] capabilities. This feature, however, typically
requires extending the core language. Other languages like Coq often require writing extensions
in a less integrated manner, e.g, programming plugins with OCaml and then linking it with other
language binaries. With our approach, we use the metaprogramming facilities inherited from the
host language, and thus get to write extensions in a more linguistically supported manner.
One of the most common extensions created by dependently-typed programmers, using many clever
methods, is new tactic languages [Gonthier and Mahboubi 2010; Gonthier et al. 2011; Krebbers
et al. 2017; Malecha and Bengtson 2016]. This suggests that (1) the ability to create domain-specific
tactic languages is critical, and (2) that linguistic support for creation of such DSLs would be
well received. While we have yet to conduct a thorough comparison of all tactic languages and
their implementations, we conjecture that our macros-based approach could accommodate many
of them in a convenient manner. For example, there has been recent exploration of typed tactic
languages Beluga [Pientka 2008], Mtac [Ziliani et al. 2013], and VeriML [Stampoulis and Shao 2010].
We conjecture that it would be straightforward to add a typed tactic language to Cur using our
macros-based approach. This could be done either by utilizing Turnstile, or using Cur’s reflection
API to use Cur as it’s own meta-language, following the approach of Lean [Ebner et al. 2017] or
Typed Template Coq [Anand et al. 2018].

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

8 CONCLUSION
To fully leverage the power of dependent types, programmers should be able to quickly develop
their own dependently-typed DSLs with just the right expressiveness for their domain. Further,
these DSLs should be easily extensible with any new notation or companion DSLs that might be
required to make the language practical for realistic programming. We have demonstrated that a
macros-based approach to building dependently-typed DSLs satisfies this criteria. For future work,
we hope to leverage the rapid prototyping benefit of our approach to experiment with new type
theory features like extensions for parametricity modalities and homotopy type theory, and to
leverage the extensibility to further explore other domain-specific dependent type applications.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Dependent Type Systems as Macros 1:27

REFERENCES
2016. RFC: Const-dependent Type System. (June 2016). https://github.com/rust-lang/rfcs/pull/1657
2017. RFC: The pi type trilogy. (Feb. 2017). https://github.com/rust-lang/rfcs/issues/1930
Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, and Nicolas Oury. 2010. ΠΣ: Dependent Types Without the

Sugar. In Proceedings of the 10th International Conference on Functional and Logic Programming (FLOPS’10). 40–55.
Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nicolas Tabareau. 2018. Towards Certified Meta-

Programming with Typed Template-Coq. (2018). www.irif.fr/~sozeau/research/publications/drafts/Towards_Certified_
Meta-Programming_with_Typed_Template-Coq.pdf

Leif Andersen, Stephen Chang, and Matthias Felleisen. 2017. Super 8 Languages for Making Movies (Functional Pearl). Proc.
ACM Program. Lang. 1, ICFP, Article 30 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110274

Lennart Augustsson. 2007. Simpler, Easier! (2007). http://augustss.blogspot.ru/2007/10/
simpler-easier-in-recent-paper-simply.html

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. 2009. Formal Certification of Code-based Cryptographic
Proofs. In Symposium on Principles of Programming Languages (POPL). https://doi.org/10.1145/1480881.1480894

Andrej Bauer. 2012. How to Implement Dependent Type Theory. (2012). http://math.andrej.com/2012/11/08/
how-to-implement-dependent-type-theory-i/

Benjamin Beurdouche, Franziskus Kiefer, and Tim Taubert. 2017. Verified cryptography for Firefox 57. (July 2017).
https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/

Edwin Brady and Kevin Hammond. 2006. Dependently Typed MetaProgramming. In 7th Symposium on Trends in Functional
Programming.

Edwin C. Brady. 2005. Practical Implementation of a Dependently Typed Functional Programming Language. Ph.D. Dissertation.
University of Durham.

Stephen Chang, Alex Knauth, and Ben Greenman. 2017. Type Systems As Macros. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages. 694–705.

Adam Chlipala. 2011. Mostly-automated Verification of Low-level Programs in Computational Separation Logic. In
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation. 234–245.

Adam Chlipala, Benjamin Delaware, Samuel Duchovni, Jason Gross, Clément Pit-Claudel, Sorawit Suriyakarn, Peng Wang,
and Katherine Ye. 2017. The End of History? Using a Proof Assistant to Replace Language Design with Library Design.
In Summit oN Advances in Programming Languages (SNAPL). https://doi.org/10.4230/LIPIcs.CVIT.2016.23

David Raymond Christiansen. 2014. Type-Directed Elaboration of Quasiquotations: A High-Level Syntax for Low-Level
Reflection. In of the 26nd 2014 International Symposium on Implementation and Application of Functional Languages (IFL
2014). ACM, 1.

Thierry Coquand and Gérard P. Huet. 1988. The Calculus of Constructions. Inf. Comput. 76, 2/3 (1988), 95–120. https:
//doi.org/10.1016/0890-5401(88)90005-3

Ryan Culpepper and Matthias Felleisen. 2010. Fortifying macros. In Proceeding of the 15th ACM SIGPLAN International
Conference on Functional Programming. 235–246.

N.G. de Bruijn. 1991. Telescopic Mappings in Typed Lambda-Calculus. Information and Computation 91, 2 (1991), 189–204.
Dominique Devriese and Frank Piessens. 2013. Typed SyntacticMeta-programming. In of the 18th ACM SIGPLAN International

Conference on Functional Programming (ICFP 2013). 73–86.
Peter Dybjer. 1994. Inductive families. Formal Aspects of Computing 6, 4 (01 Jul 1994), 440–465.
Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. 2017. A metaprogramming

framework for formal verification. Proceedings of the ACM on Programming Languages (PACMPL) 1, ICFP (2017),
34:1–34:29. https://doi.org/10.1145/3110278

Matthew Flatt. 2016. Binding As Sets of Scopes. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. 705–717.

Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. 2012. Macros That Work Together: Compile-
time Bindings, Partial Expansion, and Definition Contexts. 22, 2 (March 2012), 181–216. https://doi.org/10.1017/
S0956796812000093

Matthew Flatt and PLT. 2010. Reference: Racket. Technical Report PLT-TR-2010-1. PLT Design Inc. http://racket-lang.org/tr1/.
Martin Fowler and Rebecca Parsons. 2010. Domain-Specific Languages. Addison-Wesley.
Georges Gonthier and Assia Mahboubi. 2010. An introduction to small scale reflection in Coq. Journal of Formalized

Reasoning 3, 2 (2010), 95–152. https://hal.inria.fr/inria-00515548
Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. 2011. How to Make Ad Hoc Proof Automation

Less Ad Hoc. In Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming (ICFP ’11).
ACM, New York, NY, USA, 163–175. https://doi.org/10.1145/2034773.2034798

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-order Concurrent Separation Logic.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/rust-lang/rfcs/pull/1657
https://github.com/rust-lang/rfcs/issues/1930
www.irif.fr/~sozeau/research/publications/drafts/Towards_Certified_Meta-Programming_with_Typed_Template-Coq.pdf
www.irif.fr/~sozeau/research/publications/drafts/Towards_Certified_Meta-Programming_with_Typed_Template-Coq.pdf
https://doi.org/10.1145/3110274
http://augustss.blogspot.ru/2007/10/simpler-easier-in-recent-paper-simply.html
http://augustss.blogspot.ru/2007/10/simpler-easier-in-recent-paper-simply.html
https://doi.org/10.1145/1480881.1480894
http://math.andrej.com/2012/11/08/how-to-implement-dependent-type-theory-i/
http://math.andrej.com/2012/11/08/how-to-implement-dependent-type-theory-i/
https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1145/3110278
https://doi.org/10.1017/S0956796812000093
https://doi.org/10.1017/S0956796812000093
http://racket-lang.org/tr1/
https://hal.inria.fr/inria-00515548
https://doi.org/10.1145/2034773.2034798

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

York, NY, USA, 205–217. https://doi.org/10.1145/3009837.3009855
Andres Löh, Conor McBride, and Wouter Swierstra. 2010. A Tutorial Implementation of a Dependently Typed Lambda

Calculus. Fundam. Inform. 102, 2 (2010), 177–207.
Gregory Malecha and Jesper Bengtson. 2016. Programming Languages and Systems: 25th European Symposium on Program-

ming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter Extensible and
Efficient Automation Through Reflective Tactics, 532–559. https://doi.org/10.1007/978-3-662-49498-1_21

Per Martin-Löf. 1975. An intuitionistic theory of types: Predicative part. Studies in Logic and the Foundations of Mathematics
80 (1975), 73–118.

Conor McBride. 2000. Dependently Typed Functional Programs and Their Proofs. Ph.D. Dissertation. University of Edinburgh,
UK. http://hdl.handle.net/1842/374

Conor McBride and James McKinna. 2004. The View from the Left. J. Funct. Program. 14, 1 (2004), 69–111. https:
//doi.org/10.1017/s0956796803004829

Frank Pfenning and Christine Paulin-Mohring. 1989. Inductively Defined Types in the Calculus of Constructions. In
Mathematical Foundations of Programming Semantics, 5th International Conference, Tulane University, New Orleans,
Louisiana, USA, March 29 - April 1, 1989, Proceedings (Lecture Notes in Computer Science), Michael G. Main, Austin Melton,
Michael W. Mislove, and David A. Schmidt (Eds.), Vol. 442. Springer, 209–228. https://doi.org/10.1007/BFb0040259

Brigitte Pientka. 2008. A Type-theoretic Foundation for Programming with Higher-order Abstract Syntax and First-
class Substitutions. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’08). 371–382.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cǎtǎlin Hriţcu,
Vilhelm Sjöberg, and Brent Yorgey. 2018. Logical Foundations. Electronic textbook.

Benjamin C. Pierce and David N. Turner. 1998. Local Type Inference. In Proceedings of the 25th ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages. 252–265.

Justin Pombrio and Shriram Krishnamurthi. 2018. Inferring Type Rules for Syntactic Sugar. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 812–825.

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar, and Rok Strniša. 2007. Ott:
Effective Tool Support for the Working Semanticist. In of the 12th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2007). ACM, New York, NY, USA, 1–12. https://doi.org/10.1145/1291151.1291155

Antonis Stampoulis and Zhong Shao. 2010. VeriML: Typed Computation of Logical Terms Inside a Language with Effects.
In of the 15th ACM SIGPLAN International Conference on Functional Programming (ICFP 2010). 333–344.

Stephanie Weirich. 2014. Pi Forall: notes from OPLSS. (2014). https://github.com/sweirich/pi-forall
Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A. Eisenberg. 2017. A Specification

for Dependent Types in Haskell. Proceedings of the ACM on Programming Languages (PACMPL) 1, ICFP (Aug. 2017).
https://doi.org/10.1145/3110275

Hongwei Xi. 2007. Dependent ML An approach to practical programming with dependent types. Journal of Functional
Programming 17, 2 (2007), 215–286. https://doi.org/10.1017/S0956796806006216

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon L. Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.
2012. Giving Haskell a promotion. In Types in Language Design and Implementation (TLDI). https://doi.org/10.1145/
2103786.2103795

Beta Ziliani, Derek Dreyer, Neelakantan R Krishnaswami, Aleksandar Nanevski, and Viktor Vafeiadis. 2013. Mtac: A Monad
for Typed Tactic Programming in Coq. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2013). ACM, New York, NY, USA, 87–100. https://doi.org/10.1145/2500365.2500579

Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beurdouche. 2017. HACL*: A Verified
Modern Cryptographic Library. In Conference on Computer and Communications Security, (CCS). https://doi.org/10.1145/
3133956.3134043

A STYLE AND GLOSSARY
This section summarizes the various style choices used in the paper, and also presents some macro
terminology that may help with reading the paper.

A.1 Macros Glossary
• A syntax object is the Racket AST representation. It’s a tree of symbols, accompanied by
context information such as source locations, the program’s binding structure, and even
arbitrary user-specified metadata.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-662-49498-1_21
http://hdl.handle.net/1842/374
https://doi.org/10.1017/s0956796803004829
https://doi.org/10.1017/s0956796803004829
https://doi.org/10.1007/BFb0040259
https://doi.org/10.1145/1291151.1291155
https://github.com/sweirich/pi-forall
https://doi.org/10.1145/3110275
https://doi.org/10.1017/S0956796806006216
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1145/2500365.2500579
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Dependent Type Systems as Macros 1:29

• Syntax patterns deconstruct syntax objects, binding pattern variables to different parts of a
syntax object, which are themselves syntax objects.

• Syntax templates construct syntax objects. They may reference pattern variables, whose
corresponding syntax object gets embedded into the constructed syntax object.

• Syntax properties are key-value pairs associated with syntax object nodes. We use syntax
properties to propagate type and other meta information about a piece of syntax.

A.2 Style
In the paper, to help readability, we often stylize code with colors or abbreviations. This section
summarizes a few of our choices.

• syntax pattern positions, which deconstruct syntax objects, are highlighted with green. A
macro definition’s input is frequently a pattern position.

• syntax template positions, which construct syntax objects, are in blue. A macro definition’s
output is frequently a syntax template position. When there are nested positions, e.g., for
a macro defining macro, we might instead enclose the syntax template with ⌜⌞⌝⌟, so that the
coloring of any nested pattern and syntax template positions are not obscured.

• The name being defined (e.g., a macro, typerule, function, etc.) is always underlined.
• In a pattern, literal symbols to match are marked with bold (latex pmb).
• Pattern variables representing elaborated, i.e., expanded, syntax objects are marked with an
overline.

• Syntax classes, which additionally constrain the shape of pattern variables, are written with a
superscript.

B MACRO SYSTEM FEATURES
This section, beginning with table 2, summarizes the macro system features used in the paper, and
their availability in other macro systems. While, to our knowledge, Racket is the only language
that combines all the features needed for “type systems as macros”, many other popular languages
are rapidly adopting the same features in their macro systems.

B.1 Procedural macros
Procedural macros are syntax transformations defined in a general-purpose language supporting
arbitrary computations. They are essential to allow arbitrary type-checking logic during expansion.

B.2 Quasiquotation and syntax pattern matching
With quasiquotation, macros construct their expansion using syntax matching the textual form of
the language, plus escapes for inserting computed elements. Similarly, macros using syntax pattern
matching deconstruct the AST of macro invocations using syntax matching the textual form of the
language. We use pattern matching and quasiquotation to give type rule macros relatively readable
syntax, even without the Turnstile DSL layer.

B.3 Extensible pattern matching
Turnstile types expand into a common internal representation which enables simple implementa-
tions of type equality and substitution. Pattern matching this internal representation is verbose. we
use Racket’s pattern expanders, e.g., in section 3.3, to abstract away the internal representation and
create simple pattern forms for each type constructor.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Stephen Chang, Michael Ballantyne, Marcela Poffald, and William J. Bowman

Racket Lisp Clojure Scala Rust Julia Elixir Crystal
Procedural macros X X X X X X
Quasiquotation X X X X X X X X
Syntax pattern matching X X X
Extensible pattern matching X X1
Automatic hygiene X X X X
Syntax properties X X2 X3 X4
Macro-defining macros X X X X
Identifier macros X X ∼5
Local expansion X X ∼5
Interposition points X
(1) Referred to as “extractor macros”
(2) Referred to as “property lists”
(3) Referred to as “metadata”
(4) Referred to as “attachments”
(5) Clojure does not have symbol macros or expansion in the environment of local macro

definitions, but they can be added as a library. See https://github.com/clojure/tools.macro.
Table 2. Macro system features used in the paper, and their availability in other macro systems.

B.4 Automatic hygiene
Program transformations that introduce temporary variables or references to procedure bindings
that may be shadowed need to take care to avoid name capture. Manual solutions include using
an operation to generate unique names, and namespace-qualifying references. Macro systems
supporting automatic hygiene avoid capture without any such manual intervention. Automatic
hygiene is useful for types as macros because it keeps type rules concise. Racket uses the set of
scopes hygiene algorithm, which works well with local expansion [Flatt 2016].

B.5 Syntax properties
Syntax properties are key-value pairs that may be attached to syntax during expansion, and
communicate extra information about syntax between macros. We annotate typechecked forms
with a syntax property in order to communicate the inferred type to the parent form’s expansion.

B.6 Macro-defining macros and identifier macros
In a system supporting macro-defining macros, the expansion of one macro may define another.
Identifier macros, also known as symbol macros, allow an identifier to be bound to a macro that
expands when the identifier is used in reference position. We use macro-defined identifier macros
to cause references to typed variables to be annotated with their type. The Turnstile DSL is also an
example of a macro-defining macro, as uses of the define-tyrule macro define type rule macros.

B.7 Local expansion
Macro systems with local expansion allow macros to request the expansion of subexpressions,
including in the environment of local variable and macro bindings. We use local expansion to
typecheck subexpressions and access their inferred type while typechecking the parent expression.
Racket’s approach to local expansion is discussed in Flatt et al. [2012].

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/clojure/tools.macro

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Dependent Type Systems as Macros 1:31

(= 2 (+ 1 1))

(= 2τ (+τ 1τ 1τ))

(=τ 2τ (+τ1τ 1τ))

(=R 2R 2R)

(= 2R 2R)(=R 2R (+R1R 1R))

 2τ
(+τ 1τ 1τ)

(+R 1R 1R)

(=τ 2R 2R)

(= 2 (+ 1 1))

Fig. 25. Example of the interleaving

B.8 Interposition points
Racket’s expander automatically inserts hooks at various points, e.g., the #%appmacro at each func-
tion application and the #%datum macro at each literal datum (like a number), to allow customizing
the behavior of these and other constructs such as modules and the REPL. By redefining these
macros, types as macros can add typechecking to the expansion of these syntactic elements.

B.9 Interleaving Semantics
Combined, the above features allow us to interleave macro expansion, type checking, and evaluation,
and to communicate information across each stage effectively. In Figure 25 (left), we give an example
of a term as it proceeds through the interleaved macro expansion and type checking process, while
in Figure 25 (right), we show an example of the interleaving of macro expansion, type checking,
and evaluation. Specifically, we show the expansion of an equality type (= 2 (+ 1 1)). Without
type level reduction, this elaborates each subexpression into the type-annotated version (denoted
by the τ subscript), before generating the fully elaborated run-time representations (denoted by
the R subscript). The type-annotated versions represent the output of type-rule macros, while the
run-time representations represent the output of the reduction-rule macros. Without dependent
types, the type-annotated and run-time representations are the same. However, once we support
dependent types and reduction rules as macros, they are different and require the reflection process
described in Section 4.
Notice that, on the right of the figure with reduction during type-checking, we end up with a

run-time subterm that must be interleaved with type-annotated terms. Supporting this, particularly
when any term (such as a function defined in another module) can be evaluated at expansion time,
is the key challenge in the type systems as macros approach, which we solve using many of the
above macro system features.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Creating Macro-Based DSLs with Racket: Primer
	2.1 An Untyped DSL
	2.2 A Typed DSL
	2.3 A DSL for Typed DSLs

	3 Lightweight Dependent Types, for Video
	3.1 Defining Types
	3.2 Type Checking Telescopes
	3.3 Macros for Pattern Matching
	3.4 Putting It All Together
	3.5 Type-Level Computation

	4 A Dependently-Typed Calculus
	4.1 Defining Type-Level Reductions
	4.2 A Little Sugar
	4.3 A Library of Natural Numbers
	4.4 An Equality Type Library, and Applying Telescopes
	4.5 Indexed Inductive Type Families

	5 Cur: A Proof Assistant as Macros
	5.1 Olly
	5.2 A Tactic Language

	6 Future Work
	7 Related Work
	8 Conclusion
	References
	A Style and Glossary
	A.1 Macros Glossary
	A.2 Style

	B Macro System Features
	B.1 Procedural macros
	B.2 Quasiquotation and syntax pattern matching
	B.3 Extensible pattern matching
	B.4 Automatic hygiene
	B.5 Syntax properties
	B.6 Macro-defining macros and identifier macros
	B.7 Local expansion
	B.8 Interposition points
	B.9 Interleaving Semantics

