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Abstract

Any part of a genome, considered separately from the rest of
the genome, evolves against a “virtual fitness landscape” that
results when the rest of the genome is held constant. We show
how analyzing a genome in this way can explain one form of
progressively increasing evolvability.

When one part of a genome is a vector of numbers (“knobs”)
and the rest is a graph that determines the mapping from
knobs to phenotype, the graph will respond to selective pres-
sure to “acclivate” the virtual fitness function faced by the
knobs—that is, to make it more hill-shaped. For as long as
the knobs’ virtual fitness function provides opportunity for
distorting it to make knob-turning mutations improve fitness,
the graph experiences pressure to evolve those distortions as
a side-effect of responding to its own virtual fitness function.

As the knobs’ virtual fitness function grows more hill-shaped,
the knobs track upward paths more easily and hence so does
the genotype as a whole. A synergy develops between in-
cremental exploration of phenotypes by knob-mutations and
discontinuous exploration by graph-mutations. A favorable
condition for this is a global fitness function that frequently
varies, changing constants but leaving structural invariants
unchanged. The graph then accumulates a memory of the
invariants as revealed across many previous epochs, held in
the form of bias limiting and directing future evolution.

Introduction
In previous work (Kovitz, 2015), we found that cascad-
ing designs—organisms consisting of graphs that direct cas-
cades of interactions among many parts—are well suited to
evolve increasing evolvability, because a single mutation is
likely to produce a coordinated change throughout the phe-
notype, preserving relationships among the parts of the phe-
notype that might be essential for survival while altering
constants that incrementally improve fitness. The classic
example of a cascading design is a metabolic network: a
variety of enzymes, each catalyzing reactions that create,
consume, speed, or slow other enzymes. Others include
neural networks, genetic regulatory networks, and even soft-
ware systems where cascades of activity are propagated by
function-calls or message-passing.

In the present paper, we investigate a synergy between the
“knobs” of a cascading design—elements subject to incre-
mental, quantitative mutation—and the “graph” or “topol-
ogy” of a cascading design—the structure of interactions
that is subject to discontinuous, sometimes radical muta-
tions. We find that under certain conditions, the graph faces
selective pressure to map a rugged fitness landscape to a
more hill-shaped virtual landscape for the knobs. The map
often excludes the worst regions of the landscape from its
range. The result is a mechanism by which evolvability can
evolve (Colegrave and Collins, 2008).

Virtual Fitness Functions
Any part of a genome is selected against a virtual fitness
function resulting from the interaction between the rest of
the genome and the fitness function faced by the genome as
a whole. If the whole-genome fitness function reflects the
influence of the environment on the genome, then the virtual
fitness function represents the same for a part of the genome,
whose environment includes the rest of the genome.

Let a set of genotypes G have a mapping mG : G → Φ
to a set of phenotypes Φ, and let wΦ : Φ → R be the fitness
function for the phenotypes. Then wG : G → R, the fitness
function for the whole genome, is the composition of these
functions, wG(g) = wΦ(mG(g)).

If we divide the genome into two parts G1 and G2, then
each genotype g ∈ G consists of a g1 ∈ G1 and a g2 ∈
G2, in which each g2 defines a partial-genotype–phenotype
mapping mg2 : G1 → Φ. That is, if we hold part of the
genome constant, say by fixing g2, this defines a mapping
from all possible values of the rest of the genome, g1, to
corresponding phenotypes. If we reverse g1 and g2, then
of course we get the opposite partial-genotype–phenotype
mapping, mg1 : G2 → Φ.

These mappings, in turn, define virtual fitness functions
vg2(g1) = wΦ(mg2(g1)) and vg1(g2) = wΦ(mg1(g2)). As
mutations and crossovers can alter either or both of g1 and
g2, the partial genomes G1 and G2 coevolve cooperatively,
each selected by the fitness functions vg1

and vg2
, which

vary among all the individuals and vary each generation.
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Let evolvability be defined in some reasonable way (there
are many), so that greater evolvability implies some advan-
tage in navigating a fitness landscape upward faster or fur-
ther over succeeding generations. Let ga, gb ∈ G be two
individuals in the same population and the same generation,
ga having parts ga1 and ga2, and gb having parts gb1 and gb2.
Assuming no other advantages favoring either ga1 or gb1, if
ga1 presents its mate ga2 with a virtual fitness function vga1

that ga2 finds more evolvable than vgb1
is for gb2, then the

descendants of ga will evolve faster or further than the de-
scendants of gb (according to how evolvability is defined).

Therefore each partial genome responds to any available
selective pressure to create a virtual fitness landscape for the
other partial genome that gives the latter greater evolvabil-
ity. To illustrate with an unrealistically simple example, if
the eye and the arm are governed by separate sets of genes,
and some arm shapes make it easier for the eye to evolve—
say, by providing cues that the eye can track to for hand-eye
coordination—then there is selective pressure favoring al-
leles for those arm shapes. All other factors being equal,
evolution favors arms that make eyes easier to evolve. This
selective pressure happens indirectly; in any single genera-
tion, greater fitness wins. But over successive generations,
descendants of organisms with greater evolvability will tend
to have greater fitness than organisms with lesser evolvabil-
ity.

The above considerations make no difference for homo-
geneous genomes, where every part of each genotype un-
dergoes mutation and crossover the same as every other part
and exerts the same effect on the phenotype or on the to-
tal fitness as every other part. However, if G1 and G2 vary
according to different operators and/or affect the phenotype
or total fitness differently, there is potential for each part to
seek values that make the other part more evolvable, result-
ing in a period of progressively increasing evolvability for
the organism as a whole.

In the rest of this paper, we examine a simple and natural
way for this synergy to occur: when g1 consists of a vector
of real numbers (“knobs”) and g2 consists of a network that
provides connections through which the numbers from g1

interact.

Acclivation
As is well known, a genome consisting of a vector of num-
bers, where mutations alter the numbers by small amounts,
evolves most easily against a hill-shaped fitness function. In
a hill-shaped fitness function, local increases in fitness cor-
relate with movement toward the peak of the whole fitness
landscape (Kauffman and Levin, 1987). The more “rugged”
the landscape, the weaker is this correlation, so that follow-
ing the local gradient can lead organisms to become stuck at
local maxima from which they cannot escape by local muta-
tions (though they might escape by crossover).

Therefore, if a vector of numbers faces a rugged fitness

landscape, with difficult features such as low local peaks
and impassable moats, we can improve its evolvability for a
vector of numbers by making its fitness function more hill-
shaped. Let us call the process of making a fitness landscape
more hill-shaped acclivation.1

So, in a genome where G1 is a vector of numbers that
mutate by small amounts, and G2 is a directed graph that
feeds the numbers in G1 through nodes that perform some
function on the numbers from their input edges, eventually
leading to a phenotype whose fitness determines the fate of
the whole organism, we should expect selective pressure for
genotypes g2 ∈ G2 to produce mappings that induce accli-
vation on the virtual fitness functions vg2

. Evolution should
favor graphs that put knobs in a position where they can hill-
climb successfully.

Genome for Experimentation
To test the preceding hypothesis in a form in which accliva-
tion will be visually apparent on plots printed on paper, we
limit ourselves to genomes where g1 and the phenotype are
2-dimensional vectors and g2 is a graph connecting them.
The whole genome is a directed graph where:

1. Two nodes, called the knobs, k1 and k2, are designated
to each hold a number in [−1.0, +1.0], called an initial
activation.

2. Two other nodes, p1 and p2, are designated to hold the
phenotype.

3. Zero or more additional nodes n1, n2, . . ..

4. Each edge has a weight of either +1.0 or −1.0.

Genotype–Phenotype Mapping
The phenotype is determined by a process of spreading acti-
vation, run for 10 timesteps. At each timestep, each node can
have either an activation in [−1.0, +1.0] or no activation.
At timestep 0, only the knobs have activations: the numbers
stored in the genotype. Each successive timestep, activations
spreads from from nodes (the ones with activations) to their
neighbors. If none of a node’s incoming neighbors has an
activation, its own activation (or lack of one) is unchanged.
Otherwise, the activation of a node aj at timestep t + 1 is
calculated according to the following function:

aj(t + 1) = T (aj(t) +
∑

i

Wijai(t))

where Wij is the weight of the incoming edge, if any, from
node i to node j, and T is the following transfer function:

T (x) =
2

1 + exp(−Sx)
− 1

1From Latin clivus, meaning a slope or a hill, combined with the
prefix ad- indicating in this context an upward slope or becoming
more sloped.
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Figure 1: The transfer function T is a sigmoid function with
attractors at ±0.5 and a repellor at 0.

where S = 2.1972274554893376. This constant gives T ,
when iterated, attractors at ±0.5 and a repellor at 0.

If a node does not have an activation at time t, then it
does not figure into the above sum for calculating any other
node’s activation. At time t = 0, only the knobs have acti-
vations.

The phenotype is the vector (ap1(10), ap2(10)), i.e. the
activations of the phenotype nodes after 10 timesteps. If p1

or p2 has not received an activation after 10 timesteps, then
the genotype has no phenotype and is given a fitness of 0.0.
This can happen if no edges provide a path from a knob to
p1 or p2.

Example The following table shows step-by-step how the
spreading-activation algorithm calculates the phenotype for
the simple genotype in Figure 2.

t k1 k2 n1 p1 p2

0 −0.659 1.000
1 −0.659 0.358 −0.619 −0.619 0.800
2 −0.044 −0.319 −0.970 −0.886 0.854
3 0.769 −0.379 −0.975 −0.771 0.529
4 0.958 0.404 −0.861 −0.002 0.164
5 0.964 0.905 −0.686 0.782 0.554
6 0.948 0.968 −0.420 0.958 0.922
7 0.906 0.971 −0.118 0.970 0.970
8 0.699 0.968 0.850 0.968 0.972
9 −0.164 0.950 0.990 0.950 0.971

10 −0.853 0.698 0.964 0.700 0.971

At t=0, the genotype provides the initial activations of the
knob nodes.

At t=1, n1 and p1 each receive an input of −0.659 from
k1; each gets an activation of T (−0.659) = −0.619. Sim-
ilarly, p2 receives an input of 1.000 from k2, giving p2 an
activation of T (1.000) = 0.800. Since the only input to k1

comes from n1, and n1 had no activation on timestep 0, k1’s
activation is unchanged.

At t=2, n1 receives inputs along two edges: −0.659 from
k1 and −0.619 from itself. These add to n1’s preceding acti-
vation, so n1’s new activation becomes T (−0.619−0.619−
0.659) = −0.970. k1 now receives the −0.619 from n1

k1 -0.659 k2 1.000
1

p1

1

n1

1

p2

1-1

1

Figure 2: A simple genotype. The knob nodes are at the
top, the phenotype nodes are at the bottom, and there is one
additional node.

but the edge has weight −1, so k1’s activation becomes
T (−0.659+0.619) = 0.044. k2 receives an input of −0.659
from k1, so k2’s activation becomes T (0.358 − 0.659) =
0.319. p1’s activation becomes T (−0.619 − 0.659) =
−0.886 and p2’s becomes T (0.800 + 0.358) = 0.854.

Now that all the nodes have activations, the cycle contin-
ues: k1 and n1 interact and p1 and p2 essentially accumulate
output from k1 and k2, scaled back each timestep by the T
function.

Finally, after 10 timesteps, p1’s activation is 0.700 and
p2’s activation is 0.971, so this genotype’s phenotype is
(0.700, 0.971).

Variation Operator

In generation 0 of the first epoch in each experiment, the
population consists of genotypes containing only the two
knob nodes and the two phenotype nodes, with up to four
randomly placed edges with weights randomly chosen from
{−1, +1}, and the knobs’ initial activations chosen uni-
formly from [−1.0, 1.0].

Each organism of each successive generation is generated
by selecting one or two parents from the previous genera-
tion by tournament selection and making a child by a single
mutation or by crossover. Crossover has a low probability,
usually 0.02 or 0.05.

The possible mutations are: add a node, remove a node
(but not a knob or phenotype node), add an edge, remove
an edge, move an edge, or turn a knob. Knob-turning has
a probability roughly equal to the sum of all the graph-edit
mutations. Depending on the experiment, turning a knob
chooses a knob delta from {−0.02,+0.02} or from a normal
distribution with mean 0 and σ = 0.0.

Population sizes range from 60 to 800 depending on the
experiment. We omit some details of the variation operator
here for lack of importance. The source code is publicly
available at https://github.com/bkovitz/acclivation.
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Experiments
In each experiment, we run the genome defined above
against a different family of fitness functions and see what
virtual fitness functions emerge. We only plot vg2 , the vir-
tual fitness function seen by the knobs, since we know of no
way to plot fitness functions seen by a graph.

We found no reliably meaningful measure of acclivation.
We tried running a hill-climbing algorithm on the virtual fit-
ness functions but this yielded ambiguous results. For ex-
ample, a higher fitness reached by the hill-climbing algo-
rithm in many cases resulted not from acclivation but from
extreme canalization: the graph forced the phenotype to a
predetermined point regardless of the knobs. So, we plot no
temporal dynamics of populations. Instead, we show only
some representative individuals to illustrate the kinds of vir-
tual fitness functions found.

Each experiment tries a “family” of fitness functions, be-
cause each experiment’s fitness function has a constant that
changes randomly once per epoch: every 20 generations.
This constant moves the peak of the fitness function to dif-
ferent places in phenotype space.

Experiment 1: Razorback
In this experiment, we ran the experimental genome against
this fitness function, plotted in Figure 3(a):

wΦ(ϕ) = 10.0 · d̂(ϕ, P ) · v(|p2 − p1|;R) + waves(ϕ; 30)

where:

P is a point (the peak) chosen randomly along the y = x
line each epoch;

d̂(ϕ, P ) is a measure of the proximity of ϕ to P equal to
0.0 for the maximum possible distance and 1.0 for zero
distance:

d̂(ϕ, P ) =
max−d(ϕ, P )

max

vis the “inverted-v” function: like an inverted-U function
but peaking sharply at x = 0 and returning zero outside
the radius R, set to 0.1 or 0.2 on different runs of the
experiment:

v(x; R) =

{
0 if |x| > R

1 − ( x
R )2 if |x| ≤ R

and “waves” is a function that adds regular undulations,
giving the overall fitness function an “egg carton” look,
shown in Figure 3(a):

waves(ϕ; ν) = cos(νp1) · sin(ν(p2 +
ν

2
))

So, this function rewards the phenotype up to 10 points
for proximity to P , but only if the phenotype lies along a

narrow ridge running diagonally across phenotype space,
complicated by the addition of a regular pattern of undu-
lations. The undulations add local minima throughout the
fitness landscape to trap searches that merely follow the lo-
cal gradient.

Figure 3 shows an organism that evolved in this exper-
iment. The virtual fitness function illustrates acclivation:
there is a steep slope leading to a “butte” containing the
global fitness peak, and the narrow ridge of the phenotype
function is widened and distorted, making it climbable from
different directions.

This organism also illustrates another fundamental way,
aside from acclivation, of gaining evolvability: by restrict-
ing the range of mg2 to exclude bad parts of the phenotype
space. The genotype–phenotype mapping does not allow ac-
cess to any points in phenotype space other than those along
the center of the ridge.

Experiment 2: Circle
In this experiment, we ran the experimental genome against
this fitness function:

wΦ(ϕ) = 10.0 · d̂(ϕ, P ) · v((p2
1 + p2

2) − r2; R)

where r is the radius of a circle, R is the ridge radius as in
the first experiment, and P is a point (the peak) chosen ran-
domly along the circle at the start of each epoch. In words,
the phenotype is rewarded up to 10.0 points for proximity
to the peak, but only if the phenotype lies within R of the
perimeter of the circle—a circular ridge. We set r = 0.5 and
R = 0.15.

Figure 4 shows one organism that evolved in this exper-
iment. It has evolved canalization for phenotypes near the
circular ridge and decanalization for phenotypes in the cen-
ter of the circle (knob-turnings quickly move the phenotype
away from the center). All phenotypes outside the circle are
inaccessible in this organism’s genotype–phenotype map-
ping.

Experiment 3: Moats
In this experiment, we run a modified version of the ra-
zorback fitness function: wherever waves(ϕ) ≤ 0.5, fit-
ness is zero rather than slightly reduced; organisms with fit-
ness zero are not allowed to reproduce; the “islands” where
waves(ϕ) > 0.5 have flat, neutral plateaus, so there is no
smooth gradient to climb within any one island; and the is-
lands are spaced further apart than in the razorback exper-
iment. So, organisms can only cross from one island to a
higher island by a single mutation. Ending the lineage of
an organism that falls into the “moat” between islands simu-
lates the tendency in nature for fitness landscapes be to “ho-
ley” (Gavrilets, 1997), requiring leaps over regions of non-
viable genotypes in order to improve fitness.

Figure 5 shows an organism that successfully climbs the
chain of islands. It has evolved a genotype–phenotype map-
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(a) Phenotype fitness (b) Genotype

(c) Phenotype range (d) Virtual fitness

Figure 3: One organism from experiment 1, “Razorback”. The phenotype’s fitness function, a landscape filled with local
maxima and one wavy narrow ridge (a), has become distorted into the roughly hill-climbable virtual fitness function (d) seen
by the “knobs” of the genotype (b). In (c), the phenotype range, x, y values indicate points in phenotype space that have a
preimage in knob space when the knobs are mapped through mg2 . The z values are the fitnesses of those phenotypes (the same
as are plotted in (a)). In (b), the knob nodes are at the top, the phenotype nodes are at the bottom, numbers preceded by “i=”
are initial activation levels, and the other numbers are activation levels after 10 timesteps.

ping that squeezes the islands closer together in the virtual
fitness function so that single knob-turns can leap the moats
between them, as well as limiting the range of the virtual
fitness function to the line along the centers of the islands.

Observations and Conclusions
The main result is that against these fitness functions, filled
with traps that flummox direct evolution, a genome with
continuously varying “knobs” mapped to its phenotype by a
discontinuously varying topology or “graph” tends to evolve

increasing evolvability by (a) presenting the knobs with a
more hill-shaped virtual fitness function and (b) restricting
the range of the knob–phenotype mapping to exclude “bad”
parts of the phenotype space. Close observation of geno-
types and lineages revealed a number of subtleties regarding
how and when this process happens, explained below.

Limitations on Generality
Modelable Fitness Functions and Genetic Memory
Over many generations, the graph accumulates a “memory”
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(a) Phenotype fitness (b) Genotype

(c) Phenotype range (d) Virtual fitness

Figure 4: One organism from experiment 2, “Circle”.

of the family of whole-genome fitness functions, encoded in
the form of bias in the way its lineage searches the pheno-
type space. This bias reflects invariants in the fitness family,
such as where ridges occur and how they’re oriented, moat
size, and where zero-fitness “deserts” consistently lie.

In effect, the graphs tended to evolve into models of the
invariants in the family of fitness functions. This means that
difficulties in modeling the invariants with a graph will shut
down acclivation. For example, a graph can easily model
the Razorback family because it lies along y = x, by dis-
connecting one knob and linking the other knob to both phe-
notype nodes. But a shifted Razorback family, say along
y = 2x − .4, is much harder for the graph to model.

Knobs themselves cannot accumulate useful bias beyond
being positioned where they will be mapped to high-quality

phenotypes. This bias can be effective, though: we often
observed several lineages in a single population with knobs
positioned far apart, each ready to capitalize if the whole-
genome fitness function or the genotype–phenotype map-
ping changes to favor them again.

Non-Stationary Fitness Function We frequently wit-
nessed the decay of a population’s genetic memory. Many
times, a population that was responding quickly to shifts of
the fitness peak, moving rapidly toward it one knob-turn per
generation, lost its ability to do this when a few epochs went
by with little or no movement in the fitness peak. When
the peak stayed constant too long, selective pressure favored
canalization: genotype–phenotype mappings that held the
phenotype at the peak in the face of most mutations. In
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(a) Phenotype fitness (b) Genotype

(c) Phenotype range (d) Virtual fitness

Figure 5: One organism from experiment 3, “Moats”.

that circumstance, if knob-turning alters the phenotype at
all, it lowers fitness, so selective pressure favors rendering
it inert—that is, making a genotype–phenotype mapping in
which all points in knob-space map to the same point in phe-
notype space.

Genetic memory also frequently decayed when a knob
had a value of −1.0 or +1.0. A knob-turning mutation
that goes beyond the limits has no effect. At these times,
knob-turning often lost its sensitivity to the virtual fitness
gradient—and so improvements in fitness had to come by
graph-edits alone, which can spoil previous acclivation.

Thus a non-stationary fitness function is most favorable
for acclivation: one that changes frequently, shifting the
peak, while retaining invariants that the graph can model
in a stable way. See Reisinger et al. (2005) for discussion

of evolvability in connection with this kind of nonstationary
fitness function, including a measure, acquired evolvability,
of a genome’s ability to “represent” its invariants.

Mutation Rate When instead of limiting each offspring
to a single mutation from its parent, we allowed a number of
mutations proportional to the size of the parent (the number
of nodes), genotypes tended to “bloat”, acquiring hundreds
of disconnected nodes and edges. The problem is that when
larger genotypes can make more mutations per generation,
they have no incentive to optimize the way they respond to
graph mutations. When each organism can only vary from
its parent by a single mutation, those who do not optimize
their mutation exposure are at a disadvantage in the race to
the new peak at the start of each epoch. A lineage with an
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unnecessarily large number of ways to make neutral muta-
tions will tend to lose those races to lineages with the mini-
mal amount of “padding”.

The Transfer Function We expected that nearly any
transfer function typically used in simulated activation net-
works would induce acclivation of virtual functions (given
appropriate fitness functions, etc.), but this was decidedly
not the case. When we tried a simple y = x function
clamped within [−1.0, 1.0], step functions, rectifier func-
tions, and letting the constant in the T function stray far from
S all produced much less acclivation as well as phenotypes
of much lower fitness. The graphs could not “lock on” to the
ridge, making knob-turning nearly useless for navigating up
the fitness functions.

The T function has a peculiar characteristic that makes
it suitable for these experiments, where the only constants
in the genotype that are allowed to vary in small incre-
ments are those in the knobs. T is expansive in the range
−.28 < x < .28 and contractive everywhere else. When a
constant input, as from a knob, is fed into T repeatedly ten
times, this yields a function T (x + T (x + T (. . .))), which
is expansive in −.14 < x < .14 and contractive everywhere
else. This makes T well suited to forming a wide variety of
functions that simultaneously dilate and compress different
ranges of the phenotype space, by composition with itself
alone—without constants. Activations from incoming edges
ai beyond the first edge make a node calculate the function
T (a +

∑
i ai), giving compositions of T the ability to shift

their output right or left.
Compositions of linear transfer functions can shift pheno-

type space but they can’t dilate or compress it. This makes
it harder, perhaps impossible, to evolve an acclivated virtual
fitness function. When the constant S is varied too far from
that in T , the resulting function’s range of expansion quickly
shrinks to a tiny region around x = 0 or grows to nearly the
whole interval [−1.0, 1.0].

Virtual Knobs
We ran variations on the above experiments where nodes
other than the knobs were allowed to inherit constants. For
example, we tried allowing non-knob nodes to inherit an ini-
tial activation. Under this condition, successful organisms
tended to accumulate a collection of nodes with different
constants, none of which were connected to the knobs and
only one of which was connected to a phenotype node. They
exploited the “move edge” mutation to make these collec-
tions of nodes function as a virtual knob. Both knob nodes
were often disconnected from the rest of the graph.

The organisms seemed to prefer their virtual knobs. Vir-
tual knobs are subject to evolutionary pressure determining
how fast they turn, i.e. the probability distribution of knob-
turning deltas. The hard-coded knobs are limited to deltas in
the range of about ±0.02. The evolved virtual knobs tended

to turn much faster than our hard-coded knobs.
When we removed nodes with constants, we tried allow-

ing more than one edge between nodes. The organisms
evolved to exploit the “add edge” and “remove edge” mu-
tations as knobs. The number of edges between two nodes
effectively served as an adjustable multiplier.

To get the organisms to make use of our hard-coded
knobs, necessary to examine virtual fitness functions whose
domain is the knob settings, we had to purge the graph of all
other constants capable of varying in small increments. This
severely reduces evolvability.
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